IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v177y2021icp853-858.html
   My bibliography  Save this article

Improving enzymatic saccharification of Chinese silvergrass by FeCl3-catalyzed γ-valerolactone/water pretreatment system

Author

Listed:
  • Yao, Junwei
  • Xie, Xiaobao
  • Shi, Qingshan

Abstract

In this work, we report that FeCl3, a benign Lewis acid, could be used as a catalyst in the γ-valerolactone (GVL)/H2O solvent system to facilitate efficient pretreatment of Chinese silvergrass. The results showed that approximately 87.8% of xylan and 75.8% of lignin were removed by 80% GVL under 170 °C using 50 mM FeCl3 as a catalyst. The solubilized carbohydrate fractions in the pretreatment liquor were mainly composed of monosaccharides (glucose and xylose) rather than oligosaccharides (glucose oligomers and xylose oligomers) and inhibitors (furfural, hydroxymethylfurfural, formic acid and acetic acid). Moreover, FeCl3 decreased the transesterification of GVL with hydroxyl groups on the cellulose surface and resulted in more easily degraded cellulose. Approximately 96.5% of cellulose and 92.2% of xylan in the pretreated Chinese silvergrass were converted to fermentable monosaccharides by 10 FPU/g cellulases. This study indicated that FeCl3-catalyzed GVL solvent could efficiently deconstruct biomass and increase the cellulose digestibility, which provided a novel, GVL-based pretreatment system for processing biomass.

Suggested Citation

  • Yao, Junwei & Xie, Xiaobao & Shi, Qingshan, 2021. "Improving enzymatic saccharification of Chinese silvergrass by FeCl3-catalyzed γ-valerolactone/water pretreatment system," Renewable Energy, Elsevier, vol. 177(C), pages 853-858.
  • Handle: RePEc:eee:renene:v:177:y:2021:i:c:p:853-858
    DOI: 10.1016/j.renene.2021.06.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121008739
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.06.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    2. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Awad, Faisal N. & Qi, Xianghui & Sahu, J.N., 2019. "Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 105-128.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Aghili Mehrizi, Amirreza & Tangestaninejad, Shahram & Denayer, Joeri F.M. & Karimi, Keikhosro & Shafiei, Marzieh, 2023. "The critical impacts of anion and cosolvent on morpholinium ionic liquid pretreatment for efficient renewable energy production from triticale straw," Renewable Energy, Elsevier, vol. 202(C), pages 686-698.
    3. Wu, Wei & Taipabu, Muhammad Ikhsan & Chang, Wei-Chen & Viswanathan, Karthickeyan & Xie, Yi-Lin & Kuo, Po-Chih, 2022. "Economic dispatch of torrefied biomass polygeneration systems considering power/SNG grid demands," Renewable Energy, Elsevier, vol. 196(C), pages 707-719.
    4. Amarnath Krishnamoorthy & Cristina Rodriguez & Andy Durrant, 2022. "Sustainable Approaches to Microalgal Pre-Treatment Techniques for Biodiesel Production: A Review," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    5. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    6. Joana M.C. Fernandes & Irene Fraga & Rose M.O.F. Sousa & Miguel A.M. Rodrigues & Ana Sampaio & Rui M.F. Bezerra & Albino A. Dias, 2020. "Pretreatment of Grape Stalks by Fungi: Effect on Bioactive Compounds, Fiber Composition, Saccharification Kinetics and Monosaccharides Ratio," IJERPH, MDPI, vol. 17(16), pages 1-13, August.
    7. Mamata Singhvi & Smita Zinjarde & Beom-Soo Kim, 2022. "Sustainable Strategies for the Conversion of Lignocellulosic Materials into Biohydrogen: Challenges and Solutions toward Carbon Neutrality," Energies, MDPI, vol. 15(23), pages 1-13, November.
    8. Gomes, Michelle Garcia & Paranhos, Aline Gomes de Oliveira & Camargos, Adonai Bruneli & Baêta, Bruno Eduardo Lobo & Baffi, Milla Alves & Gurgel, Leandro Vinícius Alves & Pasquini, Daniel, 2022. "Pretreatment of sugarcane bagasse with dilute citric acid and enzymatic hydrolysis: Use of black liquor and solid fraction for biogas production," Renewable Energy, Elsevier, vol. 191(C), pages 428-438.
    9. Shen, Feng & Xiong, Xinni & Fu, Junyan & Yang, Jirui & Qiu, Mo & Qi, Xinhua & Tsang, Daniel C.W., 2020. "Recent advances in mechanochemical production of chemicals and carbon materials from sustainable biomass resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    10. Bryan Díaz & Alicia Sommer-Márquez & Paola E. Ordoñez & Ernesto Bastardo-González & Marvin Ricaurte & Carlos Navas-Cárdenas, 2024. "Synthesis Methods, Properties, and Modifications of Biochar-Based Materials for Wastewater Treatment: A Review," Resources, MDPI, vol. 13(1), pages 1-33, January.
    11. Zhang, Pingbo & Liu, Peng & Fan, Mingming & Jiang, Pingping & Haryono, Agus, 2021. "High-performance magnetite nanoparticles catalyst for biodiesel production: Immobilization of 12-tungstophosphoric acid on SBA-15 works effectively," Renewable Energy, Elsevier, vol. 175(C), pages 244-252.
    12. Bakhtyari, Ali & Bardool, Roghayeh & Rahimpour, Mohammad Reza & Iulianelli, Adolfo, 2021. "Dehydration of bio-alcohols in an enhanced membrane-assisted reactor: A rigorous sensitivity analysis and multi-objective optimization," Renewable Energy, Elsevier, vol. 177(C), pages 519-543.
    13. Wang, Youmei & Liu, Peng & Zhang, Guifen & Yang, Qiaomei & Lu, Jun & Xia, Tao & Peng, Liangcai & Wang, Yanting, 2021. "Cascading of engineered bioenergy plants and fungi sustainable for low-cost bioethanol and high-value biomaterials under green-like biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    14. Kumar, Komal & Pathak, Shailesh & Upadhyayula, Sreedevi, 2021. "Acetalization of 5-hydroxymethyl furfural into biofuel additive cyclic acetal using protic ionic liquid catalyst- A thermodynamic and kinetic analysis," Renewable Energy, Elsevier, vol. 167(C), pages 282-293.
    15. Amílcar Díaz-González & Magdalena Yeraldi Perez Luna & Erik Ramírez Morales & Sergio Saldaña-Trinidad & Lizeth Rojas Blanco & Sergio de la Cruz-Arreola & Bianca Yadira Pérez-Sariñana & José Billerman , 2022. "Assessment of the Pretreatments and Bioconversion of Lignocellulosic Biomass Recovered from the Husk of the Cocoa Pod," Energies, MDPI, vol. 15(10), pages 1-17, May.
    16. Brigagão, George Victor & Wiesberg, Igor Lapenda & Pinto, Juliana Leite & Araújo, Ofélia de Queiroz Fernandes & de Medeiros, José Luiz, 2019. "Upstream and downstream processing of microalgal biogas: Emissions, energy and economic performances under carbon taxation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 508-520.
    17. Kumar, Bikash & Bhardwaj, Nisha & Verma, Pradeep, 2020. "Microwave assisted transition metal salt and orthophosphoric acid pretreatment systems: Generation of bioethanol and xylo-oligosaccharides," Renewable Energy, Elsevier, vol. 158(C), pages 574-584.
    18. Tnah, Shen Khang & Wu, Ta Yeong & Ting, Dennis Chiong Chung & Chow, Han Ket & Shak, Katrina Pui Yee & Subramonian, Wennie & Procentese, Alessandra & Cheng, Chin Kui & Teoh, Wen Hui & Md. Jahim, Jamali, 2022. "Effect of chlorine atoms in choline chloride-monocarboxylic acid for the pretreatment of oil palm fronds and enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 182(C), pages 285-295.
    19. Dao, Fang & Zou, Yidong & Zeng, Yun & Qian, Jing & Li, Xiang, 2023. "An intelligent CPSOGSA-based mixed H2/H∞ robust controller for the multi-hydro-turbine governing system with sharing common penstock," Renewable Energy, Elsevier, vol. 206(C), pages 481-497.
    20. Gao, Zhenghui & Alshehri, Khaled & Li, Yuan & Qian, Hang & Sapsford, Devin & Cleall, Peter & Harbottle, Michael, 2022. "Advances in biological techniques for sustainable lignocellulosic waste utilization in biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:177:y:2021:i:c:p:853-858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.