IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v189y2022icp392-401.html
   My bibliography  Save this article

Exploration of lower critical solution temperature DES in a thermoreversible aqueous two-phase system for integrating glucose conversion and 5-HMF separation

Author

Listed:
  • Tu, Shanshan
  • Yu, Xiaojie
  • Ji, Qinghua
  • Ma, Qiannan
  • Zhou, Cunshan
  • Chen, Li
  • Okonkwo, Clinton Emeka

Abstract

With the deepening of the research on the conversion of cellulose biomass to furfural, there is no green and efficient method to separate sugars and 5-HMF. This study utilized a thermoreversible aqueous two-phase system (ATPS) coupled with tetrabutylammonium bromide ([N4444]Br)- based deep eutectic solvents (DES) and inorganic salts for separating glucose and 5-HMF. The thermal characteristics of DESs were analyzed by thermogravimetry (TGA) and differential scanning calorimetry (DSC). The thermoreversible phase behavior of ATPS was determined by phase diagram. Furthermore, the process factors were optimized, such as the type and concentration of DES and phosphate, the temperature, and the time of ATPS were investigated, to maximize the separation of glucose and 5-HMF. Finally, the ATPS was a successful integrated catalytic reaction of glucose involving CrCl3 and 5-HMF separation. The results showed that the ATPS consist of 30 wt% [N4444]Br-EG and 25 wt% K2HPO4 had the most efficient extraction rate, 5-HMF reached 96.0 ± 0.6%, and mainly existed in the DES phase, while glucose was enriched in salt phase, and the extraction rate reached 99.9 ± 0.03%. And the 5-HMF yield reached 25.6 ± 1.1% in the production separation integrated platform. This thermoreversible ATPS may provide a guide for the effective extraction of furfural from biomass-derived glucose.

Suggested Citation

  • Tu, Shanshan & Yu, Xiaojie & Ji, Qinghua & Ma, Qiannan & Zhou, Cunshan & Chen, Li & Okonkwo, Clinton Emeka, 2022. "Exploration of lower critical solution temperature DES in a thermoreversible aqueous two-phase system for integrating glucose conversion and 5-HMF separation," Renewable Energy, Elsevier, vol. 189(C), pages 392-401.
  • Handle: RePEc:eee:renene:v:189:y:2022:i:c:p:392-401
    DOI: 10.1016/j.renene.2022.02.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122002452
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.02.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Lei & Lin, Lu & Wu, Zhen & Zhou, Shouyong & Liu, Shijie, 2017. "Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 230-257.
    2. Mankar, Akshay R. & Pandey, Ashish & Modak, Arindam & Pant, K.K., 2021. "Microwave mediated enhanced production of 5-hydroxymethylfurfural using choline chloride-based eutectic mixture as sustainable catalyst," Renewable Energy, Elsevier, vol. 177(C), pages 643-651.
    3. Ji, Qinghua & Yu, Xiaojie & Yagoub, Abu ElGasim A. & Chen, Li & Mustapha, Abdullateef Taiye & Zhou, Cunshan, 2021. "Enhancement of lignin removal and enzymolysis of sugarcane bagasse by ultrasound-assisted ethanol synergized deep eutectic solvent pretreatment," Renewable Energy, Elsevier, vol. 172(C), pages 304-316.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. So-Yeon Jeong & Jae-Won Lee, 2021. "Effects of Sugars and Degradation Products Derived from Lignocellulosic Biomass on Maleic Acid Production," Energies, MDPI, vol. 14(4), pages 1-11, February.
    2. Zhou, Man & Fakayode, Olugbenga Abiola & Ahmed Yagoub, Abu ElGasim & Ji, Qinghua & Zhou, Cunshan, 2022. "Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Zhang, Heng & Li, Hu & Hu, Yulin & Venkateswara Rao, Kasanneni Tirumala & Xu, Chunbao (Charles) & Yang, Song, 2019. "Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Kang, Shimin & Fu, Jinxia & Zhang, Gang, 2018. "From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 340-362.
    5. Wang, Haiyong & Zhu, Changhui & Li, Dan & Liu, Qiying & Tan, Jin & Wang, Chenguang & Cai, Chiliu & Ma, Longlong, 2019. "Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 227-247.
    6. Tnah, Shen Khang & Wu, Ta Yeong & Ting, Dennis Chiong Chung & Chow, Han Ket & Shak, Katrina Pui Yee & Subramonian, Wennie & Procentese, Alessandra & Cheng, Chin Kui & Teoh, Wen Hui & Md. Jahim, Jamali, 2022. "Effect of chlorine atoms in choline chloride-monocarboxylic acid for the pretreatment of oil palm fronds and enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 182(C), pages 285-295.
    7. Xie, Junxian & Cheng, Zheng & Zhu, Shiyun & Xu, Jun, 2022. "Lewis base enhanced neutral deep eutectic solvent pretreatment for enzymatic hydrolysis of corn straw and lignin characterization," Renewable Energy, Elsevier, vol. 188(C), pages 320-328.
    8. Yan, Puxiang & Wang, Haiyong & Liao, Yuhe & Wang, Chenguang, 2023. "Zeolite catalysts for the valorization of biomass into platform compounds and biochemicals/biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    9. Hu, Di & Zhang, Man & Xu, Hong & Wang, Yuchen & Yan, Kai, 2021. "Recent advance on the catalytic system for efficient production of biomass-derived 5-hydroxymethylfurfural," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    10. You, Shuai & Zhang, Wen-Xin & Ge, Yan & Lu, Yu & Herman, Richard Ansah & Chen, Yi-Wen & Zhang, Sheng & Hu, Yang-Hao & Bai, Zhi-Yuan & Wang, Jun, 2023. "Improvement of GH10 xylanase activity based on channel hindrance elimination strategy for better synergistic cellulase to enhance green bio-energy production," Renewable Energy, Elsevier, vol. 215(C).
    11. Ouyang, Denghao & Chen, Hongmei & Liu, Nan & Zhang, Jingzhi & Zhao, Xuebing, 2022. "Insight into the negative effects of lignin on enzymatic hydrolysis of cellulose for biofuel production via selective oxidative delignification and inhibitive actions of phenolic model compounds," Renewable Energy, Elsevier, vol. 185(C), pages 196-207.
    12. Wang, Hongliang & Yang, Bin & Zhang, Qian & Zhu, Wanbin, 2020. "Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    13. Fan, Meishan & Lei, Ming & Xie, Jun & Zhang, Hongdan, 2022. "Further insights into the solubilization and surface modification of lignin on enzymatic hydrolysis and ethanol production," Renewable Energy, Elsevier, vol. 186(C), pages 646-655.
    14. Lu, Aiping & Yu, Xiaojie & Chen, Li & Okonkwo, Clinton Emeka & Otu, Phyllis & Zhou, Cunshan & Lu, Qiaomin & Sun, Qiaolan, 2023. "Development of novel ternary deep eutectic pretreatment solvents from lignin-derived phenol, and its efficiency in delignification and enzymatic hydrolysis of peanut shells," Renewable Energy, Elsevier, vol. 205(C), pages 617-626.
    15. Niakan, Mahsa & Masteri-Farahani, Majid & Seidi, Farzad, 2022. "Efficient glucose-to-HMF conversion in deep eutectic solvents over sulfonated dendrimer modified activated carbon," Renewable Energy, Elsevier, vol. 200(C), pages 1134-1140.
    16. Hu, Lei & Wu, Zhen & Jiang, Yetao & Wang, Xiaoyu & He, Aiyong & Song, Jie & Xu, Jiming & Zhou, Shouyong & Zhao, Yijiang & Xu, Jiaxing, 2020. "Recent advances in catalytic and autocatalytic production of biomass-derived 5-hydroxymethylfurfural," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Zhao, Yuan & Lu, Kaifeng & Xu, Hao & Zhu, Lingjun & Wang, Shurong, 2021. "A critical review of recent advances in the production of furfural and 5-hydroxymethylfurfural from lignocellulosic biomass through homogeneous catalytic hydrothermal conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:189:y:2022:i:c:p:392-401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.