IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224005462.html
   My bibliography  Save this article

Efficient and selective conversion of xylose to furfural over carbon-based solid acid catalyst in water-γ-valerolactone

Author

Listed:
  • Qiu, Bingbing
  • Shi, Jicheng
  • Hu, Wei
  • Wang, Yanfang
  • Zhang, Donghui
  • Chu, Huaqiang

Abstract

Hydrothermal liquefication of biomass to produce high-quality chemicals and liquid fuels is considered as a renewable and sustainable technology. Herein, a one-step hydrothermal method was used to prepare microcrystalline cellulose supported carbon-based catalyst PTA-BC with the activation factor of phosphotungstic acid. It was demonstrated by Py-FTIR, NH3-TPD and XPS that PTA-BC is not only rich in functional groups but also contains Brønsted acid sites (hydroxyl groups) and Lewis acid sites (CC, carboxyl groups). After experimental optimization, the optimum yield of furfural obtained from xylose catalyzed by PTA-BC was 81.02% at the reaction temperature of 180 °C and the reaction time of 20 min. The results show that PTA-BC contains –COOH, –OH and CC as catalytic sites and that the synergistic effect of these functional groups. The nature of the reaction solvent, appropriate reaction temperature and residence time are the main reasons for the good catalytic performance. This work provides a promising way for the synthesis of solid acid catalyst, which has a wide application prospect for the production of furfural.

Suggested Citation

  • Qiu, Bingbing & Shi, Jicheng & Hu, Wei & Wang, Yanfang & Zhang, Donghui & Chu, Huaqiang, 2024. "Efficient and selective conversion of xylose to furfural over carbon-based solid acid catalyst in water-γ-valerolactone," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005462
    DOI: 10.1016/j.energy.2024.130774
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224005462
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130774?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Cornelius Basil Tien Loong & Wu, Ta Yeong, 2021. "A review on solvent systems for furfural production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Le Cao Nhien & Nguyen Van Duc Long & Moonyong Lee, 2021. "Novel Hybrid Reactive Distillation with Extraction and Distillation Processes for Furfural Production from an Actual Xylose Solution," Energies, MDPI, vol. 14(4), pages 1-16, February.
    3. Zhao, Yuan & Lu, Kaifeng & Xu, Hao & Zhu, Lingjun & Wang, Shurong, 2021. "A critical review of recent advances in the production of furfural and 5-hydroxymethylfurfural from lignocellulosic biomass through homogeneous catalytic hydrothermal conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Kumar, Dipesh & Singh, Bhaskar & Korstad, John, 2017. "Utilization of lignocellulosic biomass by oleaginous yeast and bacteria for production of biodiesel and renewable diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 654-671.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Qiaoqiao & Liu, Zhenyu & Wu, Ta Yeong & Zhang, Lian, 2023. "Furfural from pyrolysis of agroforestry waste: Critical factors for utilisation of C5 and C6 sugars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    2. Zhou, Man & Fakayode, Olugbenga Abiola & Ahmed Yagoub, Abu ElGasim & Ji, Qinghua & Zhou, Cunshan, 2022. "Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Dar, Rouf Ahmad & Tsui, To-Hung & Zhang, Le & Tong, Yen Wah & Sharon, Sigal & Shoseyov, Oded & Liu, Ronghou, 2024. "Fermentation of organic wastes through oleaginous microorganisms for lipid production - Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    4. Dong, Shengfei & Liu, Ziyu & Yang, Xiaoyi, 2024. "Exploration of hydrothermal liquefaction of multiple algae to improve bio-crude quality and carbohydrate utilization," Applied Energy, Elsevier, vol. 361(C).
    5. Le Cao Nhien & Nguyen Van Duc Long & Moonyong Lee, 2021. "Novel Heat-Integrated Hybrid Distillation and Adsorption Process for Coproduction of Cellulosic Ethanol, Heat, and Electricity from Actual Lignocellulosic Fermentation Broth," Energies, MDPI, vol. 14(12), pages 1-17, June.
    6. Ocreto, Jherwin B. & Chen, Wei-Hsin & Ubando, Aristotle T. & Park, Young-Kwon & Sharma, Amit Kumar & Ashokkumar, Veeramuthu & Ok, Yong Sik & Kwon, Eilhann E. & Rollon, Analiza P. & De Luna, Mark Danie, 2021. "A critical review on second- and third-generation bioethanol production using microwaved-assisted heating (MAH) pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.
    8. Castro, Eulogio & Rabelo, Camila A.B. Silva & Padilla-Rascón, Carmen & Vidal, Alfonso M. & López-Linares, Juan C. & Varesche, Maria Bernadete A. & Romero, Inmaculada, 2023. "Biological hydrogen and furfural production from steam-exploded vine shoots," Renewable Energy, Elsevier, vol. 219(P1).
    9. Zoran V. Simić & Mirjana Lj. Kijevčanin & Ivona R. Radović & Miha Grilc & Gorica R. Ivaniš, 2021. "Thermodynamic and Transport Properties of Biomass-Derived Furfural, Furfuryl Alcohol and Their Mixtures," Energies, MDPI, vol. 14(22), pages 1-18, November.
    10. Lee, Cornelius Basil Tien Loong & Wu, Ta Yeong, 2021. "A review on solvent systems for furfural production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Wang, Zhihao & Xia, Shengpeng & Wang, Xiaobo & Fan, Yuyang & Zhao, Kun & Wang, Shuang & Zhao, Zengli & Zheng, Anqing, 2024. "Catalytic production of 5-hydroxymethylfurfural from lignocellulosic biomass: Recent advances, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    12. Ma, Shuaishuai & Li, Yuling & Li, Jingxue & Yu, Xiaona & Cui, Zongjun & Yuan, Xufeng & Zhu, Wanbin & Wang, Hongliang, 2022. "Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    13. Cai, Xin & Wang, Zhichao & Ye, Yueyuan & Wang, Duo & Zhang, Zhaoxia & Zheng, Zhifeng & Liu, Yunquan & Li, Shuirong, 2021. "Conversion of chitin biomass into 5-hydroxymethylfurfural: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Shao, Yuewen & Guo, Mingzhu & Fan, Mengjiao & Sun, Kai & Gao, Guoming & Li, Chao & Kontchouo, Félix Mérimé Bkangmo & Zhang, Lijun & Zhang, Shu & Hu, Xun, 2023. "Importance of oxyphilic FeNi alloy in NiFeAl catalysts for selective conversion of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran," Renewable Energy, Elsevier, vol. 208(C), pages 105-118.
    15. Xiaozan Dai & Hongwei Shen & Qiang Li & Kamal Rasool & Qian Wang & Xue Yu & Lei Wang & Jie Bao & Dayu Yu & Zongbao K. Zhao, 2019. "Microbial Lipid Production from Corn Stover by the Oleaginous Yeast Rhodosporidium toruloides Using the PreSSLP Process," Energies, MDPI, vol. 12(6), pages 1-10, March.
    16. Tnah, Shen Khang & Wu, Ta Yeong & Ting, Dennis Chiong Chung & Chow, Han Ket & Shak, Katrina Pui Yee & Subramonian, Wennie & Procentese, Alessandra & Cheng, Chin Kui & Teoh, Wen Hui & Md. Jahim, Jamali, 2022. "Effect of chlorine atoms in choline chloride-monocarboxylic acid for the pretreatment of oil palm fronds and enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 182(C), pages 285-295.
    17. New, Eng Kein & Wu, Ta Yeong & Tnah, Shen Khang & Procentese, Alessandra & Cheng, Chin Kui, 2023. "Pretreatment and sugar recovery of oil palm fronds using choline chloride:calcium chloride hexahydrate integrated with metal chloride," Energy, Elsevier, vol. 277(C).
    18. Yan, Kaiqi & Wang, Zhihao & Wang, Xiaobo & Xia, Shengpeng & Fan, Yuyang & Zhao, Kun & Zhao, Zengli & Zheng, Anqing, 2024. "Efficient catalytic conversion of cellulose into 5-hydroxymethylfurfural by modified cerium zirconium phosphates in a biphasic system," Renewable Energy, Elsevier, vol. 225(C).
    19. Ko, Ja Kyong & Lee, Jae Hoon & Jung, Je Hyeong & Lee, Sun-Mi, 2020. "Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    20. Huang, Youwang & Wang, Haiyong & Zhang, Xinghua & Zhang, Qi & Wang, Chenguang & Ma, Longlong, 2022. "Accurate prediction of chemical exergy of technical lignins for exergy-based assessment on sustainable utilization processes," Energy, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.