High-fidelity CFD simulations for the wake characteristics of the NTNU BT1 wind turbine
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.126285
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shives, Michael & Crawford, Curran, 2016. "Adapted two-equation turbulence closures for actuator disk RANS simulations of wind & tidal turbine wakes," Renewable Energy, Elsevier, vol. 92(C), pages 273-292.
- Cortina, G. & Sharma, V. & Torres, R. & Calaf, M., 2020. "Mean kinetic energy distribution in finite-size wind farms: A function of turbines’ arrangement," Renewable Energy, Elsevier, vol. 148(C), pages 585-599.
- Make, Michel & Vaz, Guilherme, 2015. "Analyzing scaling effects on offshore wind turbines using CFD," Renewable Energy, Elsevier, vol. 83(C), pages 1326-1340.
- Tran, Thanh Toan & Kim, Dong-Hyun, 2016. "Fully coupled aero-hydrodynamic analysis of a semi-submersible FOWT using a dynamic fluid body interaction approach," Renewable Energy, Elsevier, vol. 92(C), pages 244-261.
- Fang, Yuan & Duan, Lei & Han, Zhaolong & Zhao, Yongsheng & Yang, He, 2020. "Numerical analysis of aerodynamic performance of a floating offshore wind turbine under pitch motion," Energy, Elsevier, vol. 192(C).
- Qian, Yaoru & Wang, Tongguang & Yuan, Yiping & Zhang, Yuquan, 2020. "Comparative study on wind turbine wakes using a modified partially-averaged Navier-Stokes method and large eddy simulation," Energy, Elsevier, vol. 206(C).
- Sørensen, Jens Nørkær & Nilsson, Karl & Ivanell, Stefan & Asmuth, Henrik & Mikkelsen, Robert Flemming, 2020. "Analytical body forces in numerical actuator disc model of wind turbines," Renewable Energy, Elsevier, vol. 147(P1), pages 2259-2271.
- Wu, Yu-Ting & Porté-Agel, Fernando, 2015. "Modeling turbine wakes and power losses within a wind farm using LES: An application to the Horns Rev offshore wind farm," Renewable Energy, Elsevier, vol. 75(C), pages 945-955.
- Dose, B. & Rahimi, H. & Stoevesandt, B. & Peinke, J., 2020. "Fluid-structure coupled investigations of the NREL 5 MW wind turbine for two downwind configurations," Renewable Energy, Elsevier, vol. 146(C), pages 1113-1123.
- Tran, Thanh Toan & Kim, Dong-Hyun, 2016. "A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion," Renewable Energy, Elsevier, vol. 90(C), pages 204-228.
- Breton, S.-P. & Nilsson, K. & Olivares-Espinosa, H. & Masson, C. & Dufresne, L. & Ivanell, S., 2014. "Study of the influence of imposed turbulence on the asymptotic wake deficit in a very long line of wind turbines," Renewable Energy, Elsevier, vol. 70(C), pages 153-163.
- Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
- De Cillis, Giovanni & Cherubini, Stefania & Semeraro, Onofrio & Leonardi, Stefano & De Palma, Pietro, 2022. "Stability and optimal forcing analysis of a wind turbine wake: Comparison with POD," Renewable Energy, Elsevier, vol. 181(C), pages 765-785.
- Deskos, Georgios & Laizet, Sylvain & Piggott, Matthew D., 2019. "Turbulence-resolving simulations of wind turbine wakes," Renewable Energy, Elsevier, vol. 134(C), pages 989-1002.
- Liu, Yuanchuan & Xiao, Qing & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng, 2017. "Establishing a fully coupled CFD analysis tool for floating offshore wind turbines," Renewable Energy, Elsevier, vol. 112(C), pages 280-301.
- Li, Yuwei & Paik, Kwang-Jun & Xing, Tao & Carrica, Pablo M., 2012. "Dynamic overset CFD simulations of wind turbine aerodynamics," Renewable Energy, Elsevier, vol. 37(1), pages 285-298.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jimiao Zhang & Jie Li, 2024. "Revolution in Renewables: Integration of Green Hydrogen for a Sustainable Future," Energies, MDPI, vol. 17(16), pages 1-26, August.
- Zhang, Dongqin & Liu, Zhenqing & Li, Weipeng & Hu, Gang, 2023. "LES simulation study of wind turbine aerodynamic characteristics with fluid-structure interaction analysis considering blade and tower flexibility," Energy, Elsevier, vol. 282(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhou, Yang & Xiao, Qing & Liu, Yuanchuan & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng & Pan, Guang & Li, Sunwei, 2022. "Exploring inflow wind condition on floating offshore wind turbine aerodynamic characterisation and platform motion prediction using blade resolved CFD simulation," Renewable Energy, Elsevier, vol. 182(C), pages 1060-1079.
- Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
- Zeng, Fanxu & Zhang, Ningchuan & Huang, Guoxing & Gu, Qian & He, Meng, 2023. "Dynamic response of floating offshore wind turbines under freak waves with large crest and deep trough," Energy, Elsevier, vol. 278(C).
- Cai, Yefeng & Zhao, Haisheng & Li, Xin & Liu, Yuanchuan, 2023. "Effects of yawed inflow and blade-tower interaction on the aerodynamic and wake characteristics of a horizontal-axis wind turbine," Energy, Elsevier, vol. 264(C).
- de Oliveira, Marielle & Puraca, Rodolfo C. & Carmo, Bruno S., 2023. "A study on the influence of the numerical scheme on the accuracy of blade-resolved simulations employed to evaluate the performance of the NREL 5 MW wind turbine rotor in full scale," Energy, Elsevier, vol. 283(C).
- Huang, Haoda & Liu, Qingsong & Yue, Minnan & Miao, Weipao & Wang, Peilin & Li, Chun, 2023. "Fully coupled aero-hydrodynamic analysis of a biomimetic fractal semi-submersible floating offshore wind turbine under wind-wave excitation conditions," Renewable Energy, Elsevier, vol. 203(C), pages 280-300.
- Rezaeiha, Abdolrahim & Micallef, Daniel, 2021. "Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model," Renewable Energy, Elsevier, vol. 179(C), pages 859-876.
- Liu, Yuanchuan & Xiao, Qing & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng, 2017. "Establishing a fully coupled CFD analysis tool for floating offshore wind turbines," Renewable Energy, Elsevier, vol. 112(C), pages 280-301.
- Shen, Xin & Chen, Jinge & Hu, Ping & Zhu, Xiaocheng & Du, Zhaohui, 2018. "Study of the unsteady aerodynamics of floating wind turbines," Energy, Elsevier, vol. 145(C), pages 793-809.
- Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2020. "URANS simulations of a horizontal axis wind turbine under stall condition using Reynolds stress turbulence models," Energy, Elsevier, vol. 213(C).
- Micallef, Daniel & Rezaeiha, Abdolrahim, 2021. "Floating offshore wind turbine aerodynamics: Trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Cai, Yefeng & Zhao, Haisheng & Li, Xin & Liu, Yuanchuan, 2023. "Aerodynamic analysis for different operating states of floating offshore wind turbine induced by pitching movement," Energy, Elsevier, vol. 285(C).
- Kyle, Ryan & Lee, Yeaw Chu & Früh, Wolf-Gerrit, 2020. "Propeller and vortex ring state for floating offshore wind turbines during surge," Renewable Energy, Elsevier, vol. 155(C), pages 645-657.
- Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
- de Oliveira, M. & Puraca, R.C. & Carmo, B.S., 2022. "Blade-resolved numerical simulations of the NREL offshore 5 MW baseline wind turbine in full scale: A study of proper solver configuration and discretization strategies," Energy, Elsevier, vol. 254(PB).
- Kyle, Ryan & Früh, Wolf-Gerrit, 2022. "The transitional states of a floating wind turbine during high levels of surge," Renewable Energy, Elsevier, vol. 200(C), pages 1469-1489.
- Guo, Yize & Wang, Xiaodong & Mei, Yuanhang & Ye, Zhaoliang & Guo, Xiaojiang, 2022. "Effect of coupled platform pitch-surge motions on the aerodynamic characters of a horizontal floating offshore wind turbine," Renewable Energy, Elsevier, vol. 196(C), pages 278-297.
- Tian, Linlin & Song, Yilei & Wang, Zhenming & Zhao, Ning & Zhu, Chunling & Lu, Xiyun, 2024. "Predictive capability of an improved AD/RANS method for multiple wind turbines and wind farm wakes," Energy, Elsevier, vol. 297(C).
- Deng, Sijia & Liu, Yingyi & Ning, Dezhi, 2023. "Fully coupled aero-hydrodynamic modelling of floating offshore wind turbines in nonlinear waves using a direct time-domain approach," Renewable Energy, Elsevier, vol. 216(C).
- Silva, Paulo A.S.F. & Tsoutsanis, Panagiotis & Vaz, Jerson R.P. & Macias, Marianela M., 2024. "A comprehensive CFD investigation of tip vortex trajectory in shrouded wind turbines using compressible RANS solver," Energy, Elsevier, vol. 294(C).
More about this item
Keywords
CFD; Wind turbine wake; Tower effect; Wake asymmetry; Verification & validation; Numerical uncertainty;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222031711. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.