IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i2p895-920d45213.html
   My bibliography  Save this article

Towards a Simplified DynamicWake Model Using POD Analysis

Author

Listed:
  • David Bastine

    (Institute of Physics, ForWind, University of Oldenburg, Ammerländer Herrstr. 136, 26129 Oldenburg, Germany)

  • Björn Witha

    (Institute of Physics, ForWind, University of Oldenburg, Ammerländer Herrstr. 136, 26129 Oldenburg, Germany)

  • Matthias Wächter

    (Institute of Physics, ForWind, University of Oldenburg, Ammerländer Herrstr. 136, 26129 Oldenburg, Germany)

  • Joachim Peinke

    (Institute of Physics, ForWind, University of Oldenburg, Ammerländer Herrstr. 136, 26129 Oldenburg, Germany)

Abstract

We apply a modified proper orthogonal decomposition (POD) to large eddy simulation data of a wind turbine wake in a turbulent atmospheric boundary layer. The turbine is modeled as an actuator disk. Our analysis mainly focuses on the pragmatic identification of spatial modes, which yields a low order description of the wake flow. This reduction to a few degrees of freedom is a crucial first step for the development of simplified dynamic wake models based on modal decompositions. It is shown that only a few modes are necessary to capture the basic dynamical aspects of quantities that are relevant to a turbine in the wake flow. Furthermore, we show that the importance of the individual modes depends on the relevant quantity chosen. Therefore, the optimal choice of modes for a possible model could in principle depend on the application of interest. We additionally present a possible interpretation of the extracted modes by relating them to the specific properties of the wake. For example, the first mode is related to the horizontal large-scale movement.

Suggested Citation

  • David Bastine & Björn Witha & Matthias Wächter & Joachim Peinke, 2015. "Towards a Simplified DynamicWake Model Using POD Analysis," Energies, MDPI, vol. 8(2), pages 1-26, January.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:2:p:895-920:d:45213
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/2/895/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/2/895/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fleming, Paul A. & Gebraad, Pieter M.O. & Lee, Sang & van Wingerden, Jan-Willem & Johnson, Kathryn & Churchfield, Matt & Michalakes, John & Spalart, Philippe & Moriarty, Patrick, 2014. "Evaluating techniques for redirecting turbine wakes using SOWFA," Renewable Energy, Elsevier, vol. 70(C), pages 211-218.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Cillis, Giovanni & Cherubini, Stefania & Semeraro, Onofrio & Leonardi, Stefano & De Palma, Pietro, 2022. "Stability and optimal forcing analysis of a wind turbine wake: Comparison with POD," Renewable Energy, Elsevier, vol. 181(C), pages 765-785.
    2. Liu, Songyue & Li, Qiusheng & Lu, Bin & He, Junyi, 2024. "Analysis of NREL-5MW wind turbine wake under varied incoming turbulence conditions," Renewable Energy, Elsevier, vol. 224(C).
    3. Feng, Dachuan & Gupta, Vikrant & Li, Larry K.B. & Wan, Minping, 2024. "An improved dynamic model for wind-turbine wake flow," Energy, Elsevier, vol. 290(C).
    4. Rockel, Stanislav & Peinke, Joachim & Hölling, Michael & Cal, Raúl Bayoán, 2017. "Dynamic wake development of a floating wind turbine in free pitch motion subjected to turbulent inflow generated with an active grid," Renewable Energy, Elsevier, vol. 112(C), pages 1-16.
    5. Dar, Arslan Salim & Porté-Agel, Fernando, 2022. "Wind turbine wakes on escarpments: A wind-tunnel study," Renewable Energy, Elsevier, vol. 181(C), pages 1258-1275.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balakrishnan, Raj Kiran & Son, Eunkuk & Hur, Sung-ho, 2024. "Optimization of wind farm power output using wake redirection control," Renewable Energy, Elsevier, vol. 235(C).
    2. Bottasso, C.L. & Cacciola, S. & Schreiber, J., 2018. "Local wind speed estimation, with application to wake impingement detection," Renewable Energy, Elsevier, vol. 116(PA), pages 155-168.
    3. Frederik, Joeri A. & van Wingerden, Jan-Willem, 2022. "On the load impact of dynamic wind farm wake mixing strategies," Renewable Energy, Elsevier, vol. 194(C), pages 582-595.
    4. He, Ruiyang & Yang, Hongxing & Lu, Lin, 2023. "Optimal yaw strategy and fatigue analysis of wind turbines under the combined effects of wake and yaw control," Applied Energy, Elsevier, vol. 337(C).
    5. Rivera-Arreba, Irene & Li, Zhaobin & Yang, Xiaolei & Bachynski-Polić, Erin E., 2024. "Comparison of the dynamic wake meandering model against large eddy simulation for horizontal and vertical steering of wind turbine wakes," Renewable Energy, Elsevier, vol. 221(C).
    6. Su, Keye & Bliss, Donald, 2019. "A novel hybrid free-wake model for wind turbine performance and wake evolution," Renewable Energy, Elsevier, vol. 131(C), pages 977-992.
    7. Aju, Emmanuvel Joseph & Kumar, Devesh & Leffingwell, Melissa & Rotea, Mario A. & Jin, Yaqing, 2023. "The influence of yaw misalignment on turbine power output fluctuations and unsteady aerodynamic loads within wind farms," Renewable Energy, Elsevier, vol. 215(C).
    8. Tu, Yu & Chen, Yaoran & Zhang, Kai & He, Ruiyang & Han, Zhaolong & Zhou, Dai, 2025. "A multi-fidelity framework for power prediction of wind farm under yaw misalignment," Applied Energy, Elsevier, vol. 377(PC).
    9. Sun, Haiying & Qiu, Changyu & Lu, Lin & Gao, Xiaoxia & Chen, Jian & Yang, Hongxing, 2020. "Wind turbine power modelling and optimization using artificial neural network with wind field experimental data," Applied Energy, Elsevier, vol. 280(C).
    10. Mou Lin & Fernando Porté-Agel, 2023. "Power Production and Blade Fatigue of a Wind Turbine Array Subjected to Active Yaw Control," Energies, MDPI, vol. 16(6), pages 1-17, March.
    11. Gao, Zhiteng & Li, Ye & Wang, Tongguang & Shen, Wenzhong & Zheng, Xiaobo & Pröbsting, Stefan & Li, Deshun & Li, Rennian, 2021. "Modelling the nacelle wake of a horizontal-axis wind turbine under different yaw conditions," Renewable Energy, Elsevier, vol. 172(C), pages 263-275.
    12. Harsh S. Dhiman & Dipankar Deb & Vlad Muresan & Valentina E. Balas, 2019. "Wake Management in Wind Farms: An Adaptive Control Approach," Energies, MDPI, vol. 12(7), pages 1-18, April.
    13. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Wake model for horizontal-axis wind and hydrokinetic turbines in yawed conditions," Applied Energy, Elsevier, vol. 242(C), pages 1383-1395.
    14. Vasel-Be-Hagh, Ahmadreza & Archer, Cristina L., 2017. "Wind farm hub height optimization," Applied Energy, Elsevier, vol. 195(C), pages 905-921.
    15. Maarten T. van Beek & Axelle Viré & Søren J. Andersen, 2021. "Sensitivity and Uncertainty of the FLORIS Model Applied on the Lillgrund Wind Farm," Energies, MDPI, vol. 14(5), pages 1-21, February.
    16. Park, Jinkyoo & Law, Kincho H., 2016. "A data-driven, cooperative wind farm control to maximize the total power production," Applied Energy, Elsevier, vol. 165(C), pages 151-165.
    17. Xiong, Xue-Lu & Lyu, Pin & Chen, Wen-Li & Li, Hui, 2020. "Self-similarity in the wake of a semi-submersible offshore wind turbine considering the interaction with the wake of supporting platform," Renewable Energy, Elsevier, vol. 156(C), pages 328-341.
    18. Lio, Wai Hou & Larsen, Gunner Chr. & Thorsen, Gunhild R., 2021. "Dynamic wake tracking using a cost-effective LiDAR and Kalman filtering: Design, simulation and full-scale validation," Renewable Energy, Elsevier, vol. 172(C), pages 1073-1086.
    19. Guo-Wei Qian & Takeshi Ishihara, 2018. "A New Analytical Wake Model for Yawed Wind Turbines," Energies, MDPI, vol. 11(3), pages 1-24, March.
    20. Dhiman, Harsh S. & Deb, Dipankar, 2020. "Wake management based life enhancement of battery energy storage system for hybrid wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:2:p:895-920:d:45213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.