IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v180y2021icp1004-1013.html
   My bibliography  Save this article

Wind turbine blade icing diagnosis using hybrid features and Stacked-XGBoost algorithm

Author

Listed:
  • Tao, Tao
  • Liu, Yongqian
  • Qiao, Yanhui
  • Gao, Linyue
  • Lu, Jiaoyang
  • Zhang, Ce
  • Wang, Yu

Abstract

Icing significantly affects the performance of wind turbines in terms of power loss and structural degradation, and an effective blade icing diagnosis is the prerequisite to achieve the optimal control of wind turbines to mitigate such icing influence. However, current icing diagnostic methods lack consideration of fundamental icing physics and have limited generalizability to large-scale applications. To address such challenges, in the present study, we aim to propose an effective and robust blade icing diagnostic method for wind turbines. Specifically, hybrid features that fully consider both short-term and long-term icing influence are extracted based on the underlying icing physics. Such features are used to build a Stacked-XGBoost model (i.e., based on a combination of stacking ensemble learning algorithm and XGBoost machine learning algorithm) to achieve blade icing diagnosis. The proposed method is evaluated at two wind farms and further compared with three single algorithm-based models (i.e., random forest, support vector machine and XGBoost algorithms). The results show that the hybrid features significantly enhance the similarity between different datasets and the Stacked-XGBoost algorithm achieves a higher diagnostic accuracy and a better generalizability compared to the single-algorithm-based models.

Suggested Citation

  • Tao, Tao & Liu, Yongqian & Qiao, Yanhui & Gao, Linyue & Lu, Jiaoyang & Zhang, Ce & Wang, Yu, 2021. "Wind turbine blade icing diagnosis using hybrid features and Stacked-XGBoost algorithm," Renewable Energy, Elsevier, vol. 180(C), pages 1004-1013.
  • Handle: RePEc:eee:renene:v:180:y:2021:i:c:p:1004-1013
    DOI: 10.1016/j.renene.2021.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121013069
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.09.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Linyue & Tao, Tao & Liu, Yongqian & Hu, Hui, 2021. "A field study of ice accretion and its effects on the power production of utility-scale wind turbines," Renewable Energy, Elsevier, vol. 167(C), pages 917-928.
    2. Han, Shuang & Qiao, Yanhui & Yan, Ping & Yan, Jie & Liu, Yongqian & Li, Li, 2020. "Wind turbine power curve modeling based on interval extreme probability density for the integration of renewable energies and electric vehicles," Renewable Energy, Elsevier, vol. 157(C), pages 190-203.
    3. Liu, Yongqian & Qiao, Yanhui & Han, Shuang & Tao, Tao & Yan, Jie & Li, Li & Bekhbat, Galsan & Munkhtuya, Erdenebat, 2021. "Rotor equivalent wind speed calculation method based on equivalent power considering wind shear and tower shadow," Renewable Energy, Elsevier, vol. 172(C), pages 882-896.
    4. Tomas Wallenius & Ville Lehtomäki, 2016. "Overview of cold climate wind energy: challenges, solutions, and future needs," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(2), pages 128-135, March.
    5. Gao, Linyue & Liu, Yang & Zhou, Wenwu & Hu, Hui, 2019. "An experimental study on the aerodynamic performance degradation of a wind turbine blade model induced by ice accretion process," Renewable Energy, Elsevier, vol. 133(C), pages 663-675.
    6. Xiyun Yang & Tianze Ye & Qile Wang & Zhun Tao, 2020. "Diagnosis of Blade Icing Using Multiple Intelligent Algorithms," Energies, MDPI, vol. 13(11), pages 1-15, June.
    7. Dong, Xinghui & Gao, Di & Li, Jia & Jincao, Zhang & Zheng, Kai, 2020. "Blades icing identification model of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 162(C), pages 575-586.
    8. Lee, Jae-Kyung & Park, Joon-Young & Oh, Ki-Yong & Ju, Seung-Hwan & Lee, Jun-Shin, 2015. "Transformation algorithm of wind turbine blade moment signals for blade condition monitoring," Renewable Energy, Elsevier, vol. 79(C), pages 209-218.
    9. Jiménez, Alfredo Arcos & García Márquez, Fausto Pedro & Moraleda, Victoria Borja & Gómez Muñoz, Carlos Quiterio, 2019. "Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis," Renewable Energy, Elsevier, vol. 132(C), pages 1034-1048.
    10. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    11. Lijun Zhang & Kai Liu & Yufeng Wang & Zachary Bosire Omariba, 2018. "Ice Detection Model of Wind Turbine Blades Based on Random Forest Classifier," Energies, MDPI, vol. 11(10), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel Moreira & Frederico Rodrigues & Sílvio Cândido & Guilherme Santos & José Páscoa, 2023. "Development of a Background-Oriented Schlieren (BOS) System for Thermal Characterization of Flow Induced by Plasma Actuators," Energies, MDPI, vol. 16(1), pages 1-17, January.
    2. Bai, Xinjian & Tao, Tao & Gao, Linyue & Tao, Cheng & Liu, Yongqian, 2023. "Wind turbine blade icing diagnosis using RFECV-TSVM pseudo-sample processing," Renewable Energy, Elsevier, vol. 211(C), pages 412-419.
    3. Tao, Cheng & Tao, Tao & He, Shukai & Bai, Xinjian & Liu, Yongqian, 2024. "Wind turbine blade icing diagnosis using B-SMOTE-Bi-GRU and RFE combined with icing mechanism," Renewable Energy, Elsevier, vol. 221(C).
    4. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    5. Chang Cai & Jicai Guo & Xiaowen Song & Yanfeng Zhang & Jianxin Wu & Shufeng Tang & Yan Jia & Zhitai Xing & Qing’an Li, 2023. "Review of Data-Driven Approaches for Wind Turbine Blade Icing Detection," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    6. Mu, Zhongqiu & Guo, Wenfeng & Li, Yan & Tagawa, Kotaro, 2023. "Wind tunnel test of ice accretion on blade airfoil for wind turbine under offshore atmospheric condition," Renewable Energy, Elsevier, vol. 209(C), pages 42-52.
    7. Li, Chaofan & Song, Yajing & Xu, Long & Zhao, Ning & Wang, Fan & Fang, Lide & Li, Xiaoting, 2022. "Prediction of the interfacial disturbance wave velocity in vertical upward gas-liquid annular flow via ensemble learning," Energy, Elsevier, vol. 242(C).
    8. Cheng Tao & Tao Tao & Xinjian Bai & Yongqian Liu, 2023. "Wind Turbine Blade Icing Prediction Using Focal Loss Function and CNN-Attention-GRU Algorithm," Energies, MDPI, vol. 16(15), pages 1-15, July.
    9. Junshuai Yan & Yongqian Liu & Xiaoying Ren & Li Li, 2023. "Wind Turbine Gearbox Condition Monitoring Using Hybrid Attentions and Spatio-Temporal BiConvLSTM Network," Energies, MDPI, vol. 16(19), pages 1-22, September.
    10. Qiao, Yanhui & Han, Shuang & Zhang, Yajie & Liu, Yongqian & Yan, Jie, 2024. "A multivariable wind turbine power curve modeling method considering segment control differences and short-time self-dependence," Renewable Energy, Elsevier, vol. 222(C).
    11. Fan Cai & Yuesong Jiang & Wanqing Song & Kai-Hung Lu & Tongbo Zhu, 2024. "Short-Term Wind Turbine Blade Icing Wind Power Prediction Based on PCA-fLsm," Energies, MDPI, vol. 17(6), pages 1-15, March.
    12. Artur Bejger & Jan Bohdan Drzewieniecki & Przemysław Bartoszko & Ewelina Frank, 2023. "The Use of Coherence Functions of Acoustic Emission Signals as a Method for Diagnosing Wind Turbine Blades," Energies, MDPI, vol. 16(22), pages 1-17, November.
    13. Junshuai Yan & Yongqian Liu & Xiaoying Ren, 2023. "An Early Fault Detection Method for Wind Turbine Main Bearings Based on Self-Attention GRU Network and Binary Segmentation Changepoint Detection Algorithm," Energies, MDPI, vol. 16(10), pages 1-23, May.
    14. Xu Zhang & Jun Zhou & Chunguang Lu & Lei Song & Fanyu Meng & Xianbo Wang, 2024. "Non-Intrusive Load Monitoring Based on Dimensionality Reduction and Adapted Spatial Clustering," Energies, MDPI, vol. 17(17), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao, Cheng & Tao, Tao & He, Shukai & Bai, Xinjian & Liu, Yongqian, 2024. "Wind turbine blade icing diagnosis using B-SMOTE-Bi-GRU and RFE combined with icing mechanism," Renewable Energy, Elsevier, vol. 221(C).
    2. Bai, Xinjian & Tao, Tao & Gao, Linyue & Tao, Cheng & Liu, Yongqian, 2023. "Wind turbine blade icing diagnosis using RFECV-TSVM pseudo-sample processing," Renewable Energy, Elsevier, vol. 211(C), pages 412-419.
    3. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    4. Wang, Zixuan & Qin, Bo & Sun, Haiyue & Zhang, Jian & Butala, Mark D. & Demartino, Cristoforo & Peng, Peng & Wang, Hongwei, 2023. "An imbalanced semi-supervised wind turbine blade icing detection method based on contrastive learning," Renewable Energy, Elsevier, vol. 212(C), pages 251-262.
    5. Dong, Xinghui & Gao, Di & Li, Jia & Jincao, Zhang & Zheng, Kai, 2020. "Blades icing identification model of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 162(C), pages 575-586.
    6. Chang Cai & Jicai Guo & Xiaowen Song & Yanfeng Zhang & Jianxin Wu & Shufeng Tang & Yan Jia & Zhitai Xing & Qing’an Li, 2023. "Review of Data-Driven Approaches for Wind Turbine Blade Icing Detection," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    7. Gao, Linyue & Tao, Tao & Liu, Yongqian & Hu, Hui, 2021. "A field study of ice accretion and its effects on the power production of utility-scale wind turbines," Renewable Energy, Elsevier, vol. 167(C), pages 917-928.
    8. Ma, Liqun & Zhang, Zichen & Gao, Linyue & Liu, Yang & Hu, Hui, 2020. "An exploratory study on using Slippery-Liquid-Infused-Porous-Surface (SLIPS) for wind turbine icing mitigation," Renewable Energy, Elsevier, vol. 162(C), pages 2344-2360.
    9. Xiao Wang & Zheng Zheng & Guoqian Jiang & Qun He & Ping Xie, 2022. "Detecting Wind Turbine Blade Icing with a Multiscale Long Short-Term Memory Network," Energies, MDPI, vol. 15(8), pages 1-19, April.
    10. Hacıefendioğlu, Kemal & Başağa, Hasan Basri & Yavuz, Zafer & Karimi, Mohammad Tordi, 2022. "Intelligent ice detection on wind turbine blades using semantic segmentation and class activation map approaches based on deep learning method," Renewable Energy, Elsevier, vol. 182(C), pages 1-16.
    11. Yanhui Qiao & Yongqian Liu & Yang Chen & Shuang Han & Luo Wang, 2022. "Power Generation Performance Indicators of Wind Farms Including the Influence of Wind Energy Resource Differences," Energies, MDPI, vol. 15(5), pages 1-25, February.
    12. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    13. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
    14. García Márquez, Fausto Pedro & Peco Chacón, Ana María, 2020. "A review of non-destructive testing on wind turbines blades," Renewable Energy, Elsevier, vol. 161(C), pages 998-1010.
    15. de Almeida, L.A.L. & Filho, A.J. Sguarezi & Capovilla, C.E. & Casella, I.R.S. & Costa, F.F., 2016. "An impulsive noise filter applied in wireless control of wind turbines," Renewable Energy, Elsevier, vol. 86(C), pages 347-353.
    16. Xu, Zhi & Zhang, Ting & Li, Xiaojuan & Li, Yan, 2023. "Effects of ambient temperature and wind speed on icing characteristics and anti-icing energy demand of a blade airfoil for wind turbine," Renewable Energy, Elsevier, vol. 217(C).
    17. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    18. Huifan Zeng & Juchuan Dai & Chengming Zuo & Huanguo Chen & Mimi Li & Fan Zhang, 2022. "Correlation Investigation of Wind Turbine Multiple Operating Parameters Based on SCADA Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
    19. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function," Renewable Energy, Elsevier, vol. 181(C), pages 59-70.
    20. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:180:y:2021:i:c:p:1004-1013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.