IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7474-d1275653.html
   My bibliography  Save this article

The Use of Coherence Functions of Acoustic Emission Signals as a Method for Diagnosing Wind Turbine Blades

Author

Listed:
  • Artur Bejger

    (Faculty of Marine Engineering, Maritime University of Szczecin, 71-650 Szczecin, Poland)

  • Jan Bohdan Drzewieniecki

    (Faculty of Marine Engineering, Maritime University of Szczecin, 71-650 Szczecin, Poland)

  • Przemysław Bartoszko

    (Faculty of Marine Engineering, Maritime University of Szczecin, 71-650 Szczecin, Poland)

  • Ewelina Frank

    (Windhunter Academy, Windhunter Group, 75-221 Koszalin, Poland)

Abstract

Acoustic emission (AE) is one of the methods of non-destructive evaluation (NDE), and functions by means of detecting elastic waves caused by dynamic movements in AE sources, such as cracking in various material structures. In the case of offshore wind turbines, the most vulnerable components are their blades. Therefore, the authors proposed a method using AE to diagnose wind turbine blades. In the identification of their condition during monitoring, it was noted that the changes characterising blade damage involve non-linear phenomena; hence, wave phenomena do not occur in the principal components of the amplitudes or their harmonics. When the authors used the inverse transformation in the signal analysis process, which essentially leads to finding a signal measure, it allowed them to distinguish the wave spectrum of an undamaged system from one in which the material structure of the blade was damaged. The characteristic frequencies of individual phenomena interacting with the blade of a working turbine provide the basis for the introduction of filters (or narrowband sensors) that will increase the quality of the diagnosis itself. Considering the above, the use of the coherence function was proposed as an important measure of a diagnostic signal, reflecting a given condition of the blade.

Suggested Citation

  • Artur Bejger & Jan Bohdan Drzewieniecki & Przemysław Bartoszko & Ewelina Frank, 2023. "The Use of Coherence Functions of Acoustic Emission Signals as a Method for Diagnosing Wind Turbine Blades," Energies, MDPI, vol. 16(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7474-:d:1275653
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7474/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7474/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khazaee, Meghdad & Derian, Pierre & Mouraud, Anthony, 2022. "A comprehensive study on Structural Health Monitoring (SHM) of wind turbine blades by instrumenting tower using machine learning methods," Renewable Energy, Elsevier, vol. 199(C), pages 1568-1579.
    2. Tao, Tao & Liu, Yongqian & Qiao, Yanhui & Gao, Linyue & Lu, Jiaoyang & Zhang, Ce & Wang, Yu, 2021. "Wind turbine blade icing diagnosis using hybrid features and Stacked-XGBoost algorithm," Renewable Energy, Elsevier, vol. 180(C), pages 1004-1013.
    3. Guo, Jihong & Liu, Chao & Cao, Jinfeng & Jiang, Dongxiang, 2021. "Damage identification of wind turbine blades with deep convolutional neural networks," Renewable Energy, Elsevier, vol. 174(C), pages 122-133.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    2. Weiwu Feng & Da Yang & Wenxue Du & Qiang Li, 2023. "In Situ Structural Health Monitoring of Full-Scale Wind Turbine Blades in Operation Based on Stereo Digital Image Correlation," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
    3. Fan Cai & Yuesong Jiang & Wanqing Song & Kai-Hung Lu & Tongbo Zhu, 2024. "Short-Term Wind Turbine Blade Icing Wind Power Prediction Based on PCA-fLsm," Energies, MDPI, vol. 17(6), pages 1-15, March.
    4. Miguel Moreira & Frederico Rodrigues & Sílvio Cândido & Guilherme Santos & José Páscoa, 2023. "Development of a Background-Oriented Schlieren (BOS) System for Thermal Characterization of Flow Induced by Plasma Actuators," Energies, MDPI, vol. 16(1), pages 1-17, January.
    5. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    6. Qiao, Yanhui & Han, Shuang & Zhang, Yajie & Liu, Yongqian & Yan, Jie, 2024. "A multivariable wind turbine power curve modeling method considering segment control differences and short-time self-dependence," Renewable Energy, Elsevier, vol. 222(C).
    7. Chiara Furio & Luciano Lamberti & Catalin I. Pruncu, 2024. "Mechanical and Civil Engineering Optimization with a Very Simple Hybrid Grey Wolf—JAYA Metaheuristic Optimizer," Mathematics, MDPI, vol. 12(22), pages 1-68, November.
    8. Chang Cai & Jicai Guo & Xiaowen Song & Yanfeng Zhang & Jianxin Wu & Shufeng Tang & Yan Jia & Zhitai Xing & Qing’an Li, 2023. "Review of Data-Driven Approaches for Wind Turbine Blade Icing Detection," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    9. Li, Chaofan & Song, Yajing & Xu, Long & Zhao, Ning & Wang, Fan & Fang, Lide & Li, Xiaoting, 2022. "Prediction of the interfacial disturbance wave velocity in vertical upward gas-liquid annular flow via ensemble learning," Energy, Elsevier, vol. 242(C).
    10. Mohammad Barooni & Turaj Ashuri & Deniz Velioglu Sogut & Stephen Wood & Shiva Ghaderpour Taleghani, 2022. "Floating Offshore Wind Turbines: Current Status and Future Prospects," Energies, MDPI, vol. 16(1), pages 1-28, December.
    11. Junshuai Yan & Yongqian Liu & Xiaoying Ren, 2023. "An Early Fault Detection Method for Wind Turbine Main Bearings Based on Self-Attention GRU Network and Binary Segmentation Changepoint Detection Algorithm," Energies, MDPI, vol. 16(10), pages 1-23, May.
    12. Zengyi Zhang & Zhenru Shu, 2024. "Unmanned Aerial Vehicle (UAV)-Assisted Damage Detection of Wind Turbine Blades: A Review," Energies, MDPI, vol. 17(15), pages 1-31, July.
    13. Xu Zhang & Jun Zhou & Chunguang Lu & Lei Song & Fanyu Meng & Xianbo Wang, 2024. "Non-Intrusive Load Monitoring Based on Dimensionality Reduction and Adapted Spatial Clustering," Energies, MDPI, vol. 17(17), pages 1-20, August.
    14. Junshuai Yan & Yongqian Liu & Xiaoying Ren & Li Li, 2023. "Wind Turbine Gearbox Condition Monitoring Using Hybrid Attentions and Spatio-Temporal BiConvLSTM Network," Energies, MDPI, vol. 16(19), pages 1-22, September.
    15. Xiaowen Song & Zhitai Xing & Yan Jia & Xiaojuan Song & Chang Cai & Yinan Zhang & Zekun Wang & Jicai Guo & Qingan Li, 2022. "Review on the Damage and Fault Diagnosis of Wind Turbine Blades in the Germination Stage," Energies, MDPI, vol. 15(20), pages 1-17, October.
    16. Xiaoxun, Zhu & Xinyu, Hang & Xiaoxia, Gao & Xing, Yang & Zixu, Xu & Yu, Wang & Huaxin, Liu, 2022. "Research on crack detection method of wind turbine blade based on a deep learning method," Applied Energy, Elsevier, vol. 328(C).
    17. Dimitris Al. Katsaprakakis & Nikos Papadakis & Ioannis Ntintakis, 2021. "A Comprehensive Analysis of Wind Turbine Blade Damage," Energies, MDPI, vol. 14(18), pages 1-31, September.
    18. Cheng Tao & Tao Tao & Xinjian Bai & Yongqian Liu, 2023. "Wind Turbine Blade Icing Prediction Using Focal Loss Function and CNN-Attention-GRU Algorithm," Energies, MDPI, vol. 16(15), pages 1-15, July.
    19. Mu, Zhongqiu & Guo, Wenfeng & Li, Yan & Tagawa, Kotaro, 2023. "Wind tunnel test of ice accretion on blade airfoil for wind turbine under offshore atmospheric condition," Renewable Energy, Elsevier, vol. 209(C), pages 42-52.
    20. Tao, Cheng & Tao, Tao & He, Shukai & Bai, Xinjian & Liu, Yongqian, 2024. "Wind turbine blade icing diagnosis using B-SMOTE-Bi-GRU and RFE combined with icing mechanism," Renewable Energy, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7474-:d:1275653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.