IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1617-d1035458.html
   My bibliography  Save this article

Review of Data-Driven Approaches for Wind Turbine Blade Icing Detection

Author

Listed:
  • Chang Cai

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China)

  • Jicai Guo

    (College of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
    Inner Mongolia Key Laboratory of Special Service Intelligent Robotics, Hohhot 010051, China)

  • Xiaowen Song

    (College of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
    Inner Mongolia Key Laboratory of Special Service Intelligent Robotics, Hohhot 010051, China)

  • Yanfeng Zhang

    (College of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
    Inner Mongolia Key Laboratory of Special Service Intelligent Robotics, Hohhot 010051, China)

  • Jianxin Wu

    (College of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
    Inner Mongolia Key Laboratory of Special Service Intelligent Robotics, Hohhot 010051, China)

  • Shufeng Tang

    (College of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
    Inner Mongolia Key Laboratory of Special Service Intelligent Robotics, Hohhot 010051, China)

  • Yan Jia

    (College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China)

  • Zhitai Xing

    (College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China)

  • Qing’an Li

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China)

Abstract

Onshore wind turbines are primarily installed in high-altitude areas with good wind energy resources. However, in winter, the blades are easy to ice, which will seriously impact their aerodynamic performance, as well as the power and service life of the wind turbine. Therefore, it is of great practical significance to predict wind turbine blade icing in advance and take measures to eliminate the adverse effects of icing. Along these lines, three approaches to supervisory control and data acquisition (SCADA) data feature selection were summarized in this work. The problems of imbalance between positive and negative sample datasets, the underutilization of SCADA data time series information, the scarcity of high-quality labeled data, and weak model generalization capabilities faced by data-driven approaches in wind turbine blade icing detection, were reviewed. Finally, some future trends in data-driven approaches were discussed. Our work provides guidance for the use of technical means in the actual detection of wind turbine blades. In addition, it also gives some insights to the further research of fault diagnosis technology.

Suggested Citation

  • Chang Cai & Jicai Guo & Xiaowen Song & Yanfeng Zhang & Jianxin Wu & Shufeng Tang & Yan Jia & Zhitai Xing & Qing’an Li, 2023. "Review of Data-Driven Approaches for Wind Turbine Blade Icing Detection," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1617-:d:1035458
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1617/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1617/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hacıefendioğlu, Kemal & Başağa, Hasan Basri & Yavuz, Zafer & Karimi, Mohammad Tordi, 2022. "Intelligent ice detection on wind turbine blades using semantic segmentation and class activation map approaches based on deep learning method," Renewable Energy, Elsevier, vol. 182(C), pages 1-16.
    2. Tao, Tao & Liu, Yongqian & Qiao, Yanhui & Gao, Linyue & Lu, Jiaoyang & Zhang, Ce & Wang, Yu, 2021. "Wind turbine blade icing diagnosis using hybrid features and Stacked-XGBoost algorithm," Renewable Energy, Elsevier, vol. 180(C), pages 1004-1013.
    3. Cheng, Xu & Shi, Fan & Liu, Yongping & Liu, Xiufeng & Huang, Lizhen, 2022. "Wind turbine blade icing detection: a federated learning approach," Energy, Elsevier, vol. 254(PC).
    4. Guo, Peng & Infield, David, 2021. "Wind turbine blade icing detection with multi-model collaborative monitoring method," Renewable Energy, Elsevier, vol. 179(C), pages 1098-1105.
    5. Xiao Wang & Zheng Zheng & Guoqian Jiang & Qun He & Ping Xie, 2022. "Detecting Wind Turbine Blade Icing with a Multiscale Long Short-Term Memory Network," Energies, MDPI, vol. 15(8), pages 1-19, April.
    6. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    7. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    8. Lijun Zhang & Kai Liu & Yufeng Wang & Zachary Bosire Omariba, 2018. "Ice Detection Model of Wind Turbine Blades Based on Random Forest Classifier," Energies, MDPI, vol. 11(10), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Zijie & Gao, Chuanqiang & Dou, Zihao & Zhang, Weiwei, 2024. "Dynamic stall modeling of wind turbine blade sections based on a data-knowledge fusion method," Energy, Elsevier, vol. 305(C).
    2. Zhijin Zhang & Hang Zhang & Xu Zhang & Qin Hu & Xingliang Jiang, 2024. "A Review of Wind Turbine Icing and Anti/De-Icing Technologies," Energies, MDPI, vol. 17(12), pages 1-34, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao, Cheng & Tao, Tao & He, Shukai & Bai, Xinjian & Liu, Yongqian, 2024. "Wind turbine blade icing diagnosis using B-SMOTE-Bi-GRU and RFE combined with icing mechanism," Renewable Energy, Elsevier, vol. 221(C).
    2. Miguel Moreira & Frederico Rodrigues & Sílvio Cândido & Guilherme Santos & José Páscoa, 2023. "Development of a Background-Oriented Schlieren (BOS) System for Thermal Characterization of Flow Induced by Plasma Actuators," Energies, MDPI, vol. 16(1), pages 1-17, January.
    3. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    4. Zhijin Zhang & Hang Zhang & Xu Zhang & Qin Hu & Xingliang Jiang, 2024. "A Review of Wind Turbine Icing and Anti/De-Icing Technologies," Energies, MDPI, vol. 17(12), pages 1-34, June.
    5. Silvio Simani & Saverio Farsoni & Paolo Castaldi, 2023. "RETRACTED: Supervisory Control and Data Acquisition for Fault Diagnosis of Wind Turbines via Deep Transfer Learning," Energies, MDPI, vol. 16(9), pages 1-22, April.
    6. Cheng Tao & Tao Tao & Xinjian Bai & Yongqian Liu, 2023. "Wind Turbine Blade Icing Prediction Using Focal Loss Function and CNN-Attention-GRU Algorithm," Energies, MDPI, vol. 16(15), pages 1-15, July.
    7. Mu, Zhongqiu & Guo, Wenfeng & Li, Yan & Tagawa, Kotaro, 2023. "Wind tunnel test of ice accretion on blade airfoil for wind turbine under offshore atmospheric condition," Renewable Energy, Elsevier, vol. 209(C), pages 42-52.
    8. Tao, Tao & Liu, Yongqian & Qiao, Yanhui & Gao, Linyue & Lu, Jiaoyang & Zhang, Ce & Wang, Yu, 2021. "Wind turbine blade icing diagnosis using hybrid features and Stacked-XGBoost algorithm," Renewable Energy, Elsevier, vol. 180(C), pages 1004-1013.
    9. Bai, Xinjian & Tao, Tao & Gao, Linyue & Tao, Cheng & Liu, Yongqian, 2023. "Wind turbine blade icing diagnosis using RFECV-TSVM pseudo-sample processing," Renewable Energy, Elsevier, vol. 211(C), pages 412-419.
    10. Peng, Weike & Gao, Jiaxin & Chen, Yuntian & Wang, Shengwei, 2024. "Bridging data barriers among participants: Assessing the potential of geoenergy through federated learning," Applied Energy, Elsevier, vol. 367(C).
    11. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    12. Fan Cai & Yuesong Jiang & Wanqing Song & Kai-Hung Lu & Tongbo Zhu, 2024. "Short-Term Wind Turbine Blade Icing Wind Power Prediction Based on PCA-fLsm," Energies, MDPI, vol. 17(6), pages 1-15, March.
    13. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    14. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
    15. Xiao Chen & Martin A. Eder & Asm Shihavuddin & Dan Zheng, 2021. "A Human-Cyber-Physical System toward Intelligent Wind Turbine Operation and Maintenance," Sustainability, MDPI, vol. 13(2), pages 1-10, January.
    16. Alessandro Murgia & Robbert Verbeke & Elena Tsiporkova & Ludovico Terzi & Davide Astolfi, 2023. "Discussion on the Suitability of SCADA-Based Condition Monitoring for Wind Turbine Fault Diagnosis through Temperature Data Analysis," Energies, MDPI, vol. 16(2), pages 1-20, January.
    17. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    18. Adaiton Oliveira-Filho & Ryad Zemouri & Philippe Cambron & Antoine Tahan, 2023. "Early Detection and Diagnosis of Wind Turbine Abnormal Conditions Using an Interpretable Supervised Variational Autoencoder Model," Energies, MDPI, vol. 16(12), pages 1-21, June.
    19. Tobias Mueller & Steven Gronau, 2023. "Fostering Macroeconomic Research on Hydrogen-Powered Aviation: A Systematic Literature Review on General Equilibrium Models," Energies, MDPI, vol. 16(3), pages 1-33, February.
    20. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1617-:d:1035458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.