Power Generation Performance Indicators of Wind Farms Including the Influence of Wind Energy Resource Differences
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wang, Meng & Niu, Dongxiao, 2019. "Research on project post-evaluation of wind power based on improved ANP and fuzzy comprehensive evaluation model of trapezoid subordinate function improved by interval number," Renewable Energy, Elsevier, vol. 132(C), pages 255-265.
- Yan, Jie & Zhang, Hao & Liu, Yongqian & Han, Shuang & Li, Li, 2019. "Uncertainty estimation for wind energy conversion by probabilistic wind turbine power curve modelling," Applied Energy, Elsevier, vol. 239(C), pages 1356-1370.
- Dongheon Shin & Kyungnam Ko, 2019. "Application of the Nacelle Transfer Function by a Nacelle-Mounted Light Detection and Ranging System to Wind Turbine Power Performance Measurement," Energies, MDPI, vol. 12(6), pages 1-15, March.
- Sebastian Pfaffel & Stefan Faulstich & Kurt Rohrig, 2017. "Performance and Reliability of Wind Turbines: A Review," Energies, MDPI, vol. 10(11), pages 1-27, November.
- Niu, Briana & Hwangbo, Hoon & Zeng, Li & Ding, Yu, 2018. "Evaluation of alternative power production efficiency metrics for offshore wind turbines and farms," Renewable Energy, Elsevier, vol. 128(PA), pages 81-90.
- Han, Shuang & Qiao, Yanhui & Yan, Ping & Yan, Jie & Liu, Yongqian & Li, Li, 2020. "Wind turbine power curve modeling based on interval extreme probability density for the integration of renewable energies and electric vehicles," Renewable Energy, Elsevier, vol. 157(C), pages 190-203.
- Liu, Yongqian & Qiao, Yanhui & Han, Shuang & Tao, Tao & Yan, Jie & Li, Li & Bekhbat, Galsan & Munkhtuya, Erdenebat, 2021. "Rotor equivalent wind speed calculation method based on equivalent power considering wind shear and tower shadow," Renewable Energy, Elsevier, vol. 172(C), pages 882-896.
- Yongqian Liu & Yanhui Qiao & Shuang Han & Yanping Xu & Tianxiang Geng & Tiandong Ma, 2021. "Quantitative Evaluation Methods of Cluster Wind Power Output Volatility and Source-Load Timing Matching in Regional Power Grid," Energies, MDPI, vol. 14(16), pages 1-14, August.
- Aldersey-Williams, John & Broadbent, Ian D. & Strachan, Peter A., 2020. "Analysis of United Kingdom offshore wind farm performance using public data: Improving the evidence base for policymaking," Utilities Policy, Elsevier, vol. 62(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Peizhao Hong & Zhijun Qin, 2022. "Distributed Active Power Optimal Dispatching of Wind Farm Cluster Considering Wind Power Uncertainty," Energies, MDPI, vol. 15(7), pages 1-16, April.
- Meng, Qingwei & Sun, Hao & Fang, Fang, 2023. "Stochastic performance evaluation method of wind power DC bus voltage control system," Renewable Energy, Elsevier, vol. 219(P1).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
- Yan, Jie & Nuertayi, Akejiang & Yan, Yamin & Liu, Shan & Liu, Yongqian, 2023. "Hybrid physical and data driven modeling for dynamic operation characteristic simulation of wind turbine," Renewable Energy, Elsevier, vol. 215(C).
- Xu, Keyi & Yan, Jie & Zhang, Hao & Zhang, Haoran & Han, Shuang & Liu, Yongqian, 2021. "Quantile based probabilistic wind turbine power curve model," Applied Energy, Elsevier, vol. 296(C).
- Qiao, Yanhui & Han, Shuang & Zhang, Yajie & Liu, Yongqian & Yan, Jie, 2024. "A multivariable wind turbine power curve modeling method considering segment control differences and short-time self-dependence," Renewable Energy, Elsevier, vol. 222(C).
- Wang, Peng & Li, Yanting & Zhang, Guangyao, 2023. "Probabilistic power curve estimation based on meteorological factors and density LSTM," Energy, Elsevier, vol. 269(C).
- Zou, Runmin & Yang, Jiaxin & Wang, Yun & Liu, Fang & Essaaidi, Mohamed & Srinivasan, Dipti, 2021. "Wind turbine power curve modeling using an asymmetric error characteristic-based loss function and a hybrid intelligent optimizer," Applied Energy, Elsevier, vol. 304(C).
- Tao, Tao & Liu, Yongqian & Qiao, Yanhui & Gao, Linyue & Lu, Jiaoyang & Zhang, Ce & Wang, Yu, 2021. "Wind turbine blade icing diagnosis using hybrid features and Stacked-XGBoost algorithm," Renewable Energy, Elsevier, vol. 180(C), pages 1004-1013.
- Pengfei Zhang & Zuoxia Xing & Shanshan Guo & Mingyang Chen & Qingqi Zhao, 2022. "A New Wind Turbine Power Performance Assessment Approach: SCADA to Power Model Based with Regression-Kriging," Energies, MDPI, vol. 15(13), pages 1-15, July.
- Shin, Dongheon & Ko, Kyungnam, 2022. "Experimental study on application of nacelle-mounted LiDAR for analyzing wind turbine wake effects by distance," Energy, Elsevier, vol. 243(C).
- Newbery, David M. & Biggar, Darryl R., 2024. "Marginal curtailment of wind and solar PV: Transmission constraints, pricing and access regimes for efficient investment," Energy Policy, Elsevier, vol. 191(C).
- Ding, Yu & Kumar, Nitesh & Prakash, Abhinav & Kio, Adaiyibo E. & Liu, Xin & Liu, Lei & Li, Qingchang, 2021. "A case study of space-time performance comparison of wind turbines on a wind farm," Renewable Energy, Elsevier, vol. 171(C), pages 735-746.
- Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
- Huijia Yang & Weiguang Fan & Guangyu Qin & Zhenyu Zhao, 2021. "A Fuzzy-ANP Approach for Comprehensive Benefit Evaluation of Grid-Side Commercial Storage Project," Energies, MDPI, vol. 14(4), pages 1-17, February.
- Mohsen Vahidzadeh & Corey D. Markfort, 2019. "Modified Power Curves for Prediction of Power Output of Wind Farms," Energies, MDPI, vol. 12(9), pages 1-19, May.
- Moreno, Sinvaldo Rodrigues & Seman, Laio Oriel & Stefenon, Stefano Frizzo & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2024. "Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition," Energy, Elsevier, vol. 292(C).
- Hu, Yang & Xi, Yunhua & Pan, Chenyang & Li, Gengda & Chen, Baowei, 2020. "Daily condition monitoring of grid-connected wind turbine via high-fidelity power curve and its comprehensive rating," Renewable Energy, Elsevier, vol. 146(C), pages 2095-2111.
- Pinheiro, E. & Bandeiras, F. & Gomes, M. & Coelho, P. & Fernandes, J., 2019. "Performance analysis of wind generators and PV systems in industrial small-scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 392-401.
- Zhang, Yagang & Zhao, Yunpeng & Shen, Xiaoyu & Zhang, Jinghui, 2022. "A comprehensive wind speed prediction system based on Monte Carlo and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 305(C).
- Xueyan Liu & Xiaolong Gao, 2018. "A New Study on Air Quality Standards: Air Quality Measurement and Evaluation for Jiangsu Province Based on Six Major Air Pollutants," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
- Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
More about this item
Keywords
wind farms; power generation performance; wind energy resource differences; comprehensive evaluation; improved CRITIC weighting method;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1797-:d:761059. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.