IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v209y2023icp42-52.html
   My bibliography  Save this article

Wind tunnel test of ice accretion on blade airfoil for wind turbine under offshore atmospheric condition

Author

Listed:
  • Mu, Zhongqiu
  • Guo, Wenfeng
  • Li, Yan
  • Tagawa, Kotaro

Abstract

For wind turbines under offshore conditions, ice accretion occurs on the blade surface in winter because of the cold and humid environment, which leads to the performance degradation of the wind turbine. The characteristics of icing on the wind turbine blade surface under the in-cloud condition with salinity are explored. A blade segment with an airfoil of NACA0018 is selected. The tests of icing on the blade surface in different conditions of salinities, temperatures, and wind speeds are conducted in a return-flow icing wind tunnel. Two parameters are defined to evaluate icing characteristics. The distribution and amount of ice are analyzed quantitatively. Results show that salinity can restrain the amount of ice accretion. Oppositely, low temperatures and high wind speeds can increase the amount of ice. A self-developed device was manufactured to measure the adhesion strength of ice. The effects of salinity, temperature, and wind speed on adhesion strength are studied. Research indicates that adhesion strength decreases sharply first and then slowly with an increase in salinity. Even though low temperature and high wind speed both increase the adhesion strength, the growth rate decreases. The research provides a reference for anti- and de-icing technologies of offshore wind turbines.

Suggested Citation

  • Mu, Zhongqiu & Guo, Wenfeng & Li, Yan & Tagawa, Kotaro, 2023. "Wind tunnel test of ice accretion on blade airfoil for wind turbine under offshore atmospheric condition," Renewable Energy, Elsevier, vol. 209(C), pages 42-52.
  • Handle: RePEc:eee:renene:v:209:y:2023:i:c:p:42-52
    DOI: 10.1016/j.renene.2023.03.126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123004299
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.03.126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Peng & Infield, David, 2021. "Wind turbine blade icing detection with multi-model collaborative monitoring method," Renewable Energy, Elsevier, vol. 179(C), pages 1098-1105.
    2. Sun, Haoyang & Lin, Guiping & Jin, Haichuan & Bu, Xueqin & Cai, Chujiang & Jia, Qi & Ma, Kuiyuan & Wen, Dongsheng, 2021. "Experimental investigation of surface wettability induced anti-icing characteristics in an ice wind tunnel," Renewable Energy, Elsevier, vol. 179(C), pages 1179-1190.
    3. Tao, Tao & Liu, Yongqian & Qiao, Yanhui & Gao, Linyue & Lu, Jiaoyang & Zhang, Ce & Wang, Yu, 2021. "Wind turbine blade icing diagnosis using hybrid features and Stacked-XGBoost algorithm," Renewable Energy, Elsevier, vol. 180(C), pages 1004-1013.
    4. Ahsan, Faraz & Griffith, D. Todd & Gao, Ju, 2022. "Modal dynamics and flutter analysis of floating offshore vertical axis wind turbines," Renewable Energy, Elsevier, vol. 185(C), pages 1284-1300.
    5. Tong, Guoqiang & Li, Yan & Tagawa, Kotaro & Feng, Fang, 2023. "Effects of blade airfoil chord length and rotor diameter on aerodynamic performance of straight-bladed vertical axis wind turbines by numerical simulation," Energy, Elsevier, vol. 265(C).
    6. Guo, Wenfeng & Shen, He & Li, Yan & Feng, Fang & Tagawa, Kotaro, 2021. "Wind tunnel tests of the rime icing characteristics of a straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 179(C), pages 116-132.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhijin Zhang & Hang Zhang & Xu Zhang & Qin Hu & Xingliang Jiang, 2024. "A Review of Wind Turbine Icing and Anti/De-Icing Technologies," Energies, MDPI, vol. 17(12), pages 1-34, June.
    2. Jargalsaikhan, Nyam & Ueda, Soichiro & Masahiro, Furukakoi & Matayoshi, Hidehito & Mikhaylov, Alexey & Byambaa, Sergelen & Senjyu, Tomonobu, 2024. "Exploring influence of air density deviation on power production of wind energy conversion system: Study on correction method," Renewable Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Zhi & Zhang, Ting & Li, Xiaojuan & Li, Yan, 2023. "Effects of ambient temperature and wind speed on icing characteristics and anti-icing energy demand of a blade airfoil for wind turbine," Renewable Energy, Elsevier, vol. 217(C).
    2. Liu, Zhiyuan & Li, Yan & Sun, Yong & Feng, Fang & Tagawa, Kotaro, 2023. "Preparation of biochar-based photothermal superhydrophobic coating based on corn straw biogas residue and blade anti-icing performance by wind tunnel test," Renewable Energy, Elsevier, vol. 210(C), pages 618-626.
    3. Ye, Feng & Ezzat, Ahmed Aziz, 2024. "Icing detection and prediction for wind turbines using multivariate sensor data and machine learning," Renewable Energy, Elsevier, vol. 231(C).
    4. Chang Cai & Jicai Guo & Xiaowen Song & Yanfeng Zhang & Jianxin Wu & Shufeng Tang & Yan Jia & Zhitai Xing & Qing’an Li, 2023. "Review of Data-Driven Approaches for Wind Turbine Blade Icing Detection," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    5. Tao, Cheng & Tao, Tao & He, Shukai & Bai, Xinjian & Liu, Yongqian, 2024. "Wind turbine blade icing diagnosis using B-SMOTE-Bi-GRU and RFE combined with icing mechanism," Renewable Energy, Elsevier, vol. 221(C).
    6. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    7. Fan Cai & Yuesong Jiang & Wanqing Song & Kai-Hung Lu & Tongbo Zhu, 2024. "Short-Term Wind Turbine Blade Icing Wind Power Prediction Based on PCA-fLsm," Energies, MDPI, vol. 17(6), pages 1-15, March.
    8. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    9. Wendong Zhang & Yang Cao & Zhong Qian & Jian Wang & Yixian Zhu & Yanan Yang & Yujie Wang & Guoqing Wu, 2024. "Research on Aerodynamic Performance of Asynchronous-Hybrid Dual-Rotor Vertical-Axis Wind Turbines," Energies, MDPI, vol. 17(17), pages 1-22, September.
    10. Li, Chaofan & Song, Yajing & Xu, Long & Zhao, Ning & Wang, Fan & Fang, Lide & Li, Xiaoting, 2022. "Prediction of the interfacial disturbance wave velocity in vertical upward gas-liquid annular flow via ensemble learning," Energy, Elsevier, vol. 242(C).
    11. Junshuai Yan & Yongqian Liu & Xiaoying Ren, 2023. "An Early Fault Detection Method for Wind Turbine Main Bearings Based on Self-Attention GRU Network and Binary Segmentation Changepoint Detection Algorithm," Energies, MDPI, vol. 16(10), pages 1-23, May.
    12. Junshuai Yan & Yongqian Liu & Xiaoying Ren & Li Li, 2023. "Wind Turbine Gearbox Condition Monitoring Using Hybrid Attentions and Spatio-Temporal BiConvLSTM Network," Energies, MDPI, vol. 16(19), pages 1-22, September.
    13. Ghigo, Alberto & Faraggiana, Emilio & Giorgi, Giuseppe & Mattiazzo, Giuliana & Bracco, Giovanni, 2024. "Floating Vertical Axis Wind Turbines for offshore applications among potentialities and challenges: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    14. Shen, Zhuang & Gong, Shuguang & Zu, Hongxiao & Guo, Weiyu, 2024. "Multi-objective optimization study on the performance of double Darrieus hybrid vertical axis wind turbine based on DOE-RSM and MOPSO-MODM," Energy, Elsevier, vol. 299(C).
    15. Tong, Guoqiang & Yang, Shengbing & Li, Yan & Feng, Fang, 2023. "Effects of blade tip flow on aerodynamic characteristics of straight-bladed vertical axis wind turbines," Energy, Elsevier, vol. 283(C).
    16. Li, Yan & Tong, Guoqiang & Ma, Yunfei & Feng, Fang & Tagawa, Kotaro, 2023. "Numerical study on aerodynamic performance improvement of the straight-bladed vertical axis wind turbine by using wind concentrators," Renewable Energy, Elsevier, vol. 219(P2).
    17. Liming Gou & Jian Zhang & Lihao Wen & Yu Fan, 2024. "State Reliability of Wind Turbines Based on XGBoost–LSTM and Their Application in Northeast China," Sustainability, MDPI, vol. 16(10), pages 1-19, May.
    18. Bai, Xinjian & Tao, Tao & Gao, Linyue & Tao, Cheng & Liu, Yongqian, 2023. "Wind turbine blade icing diagnosis using RFECV-TSVM pseudo-sample processing," Renewable Energy, Elsevier, vol. 211(C), pages 412-419.
    19. Jiang, Tieliu & Zhao, Yuze & Wang, Shengwen & Zhang, Lidong & Li, Guohao, 2024. "Aerodynamic characterization of a H-Darrieus wind turbine with a Drag-Disturbed Flow device installation," Energy, Elsevier, vol. 292(C).
    20. Miguel Moreira & Frederico Rodrigues & Sílvio Cândido & Guilherme Santos & José Páscoa, 2023. "Development of a Background-Oriented Schlieren (BOS) System for Thermal Characterization of Flow Induced by Plasma Actuators," Energies, MDPI, vol. 16(1), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:209:y:2023:i:c:p:42-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.