Development of a Background-Oriented Schlieren (BOS) System for Thermal Characterization of Flow Induced by Plasma Actuators
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Tao, Tao & Liu, Yongqian & Qiao, Yanhui & Gao, Linyue & Lu, Jiaoyang & Zhang, Ce & Wang, Yu, 2021. "Wind turbine blade icing diagnosis using hybrid features and Stacked-XGBoost algorithm," Renewable Energy, Elsevier, vol. 180(C), pages 1004-1013.
- Ali, Qazi Shahzad & Kim, Man-Hoe, 2021. "Design and performance analysis of an airborne wind turbine for high-altitude energy harvesting," Energy, Elsevier, vol. 230(C).
- Stoyanov, D.B. & Nixon, J.D. & Sarlak, H., 2021. "Analysis of derating and anti-icing strategies for wind turbines in cold climates," Applied Energy, Elsevier, vol. 288(C).
- Manatbayev, Rustem & Baizhuma, Zhandos & Bolegenova, Saltanat & Georgiev, Aleksandar, 2021. "Numerical simulations on static Vertical Axis Wind Turbine blade icing," Renewable Energy, Elsevier, vol. 170(C), pages 997-1007.
- Cheng, Xu & Shi, Fan & Liu, Yongping & Liu, Xiufeng & Huang, Lizhen, 2022. "Wind turbine blade icing detection: a federated learning approach," Energy, Elsevier, vol. 254(PC).
- Wang, Qiang & Yi, Xian & Liu, Yu & Ren, Jinghao & Li, Weihao & Wang, Qiao & Lai, Qingren, 2020. "Simulation and analysis of wind turbine ice accretion under yaw condition via an Improved Multi-Shot Icing Computational Model," Renewable Energy, Elsevier, vol. 162(C), pages 1854-1873.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Alina Fazylova & Baurzhan Tultayev & Teodor Iliev & Ivaylo Stoyanov & Ivan Beloev, 2023. "Development of a Control Unit for the Angle of Attack of a Vertically Axial Wind Turbine," Energies, MDPI, vol. 16(13), pages 1-20, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fan Cai & Yuesong Jiang & Wanqing Song & Kai-Hung Lu & Tongbo Zhu, 2024. "Short-Term Wind Turbine Blade Icing Wind Power Prediction Based on PCA-fLsm," Energies, MDPI, vol. 17(6), pages 1-15, March.
- Xu, Zhi & Zhang, Ting & Li, Xiaojuan & Li, Yan, 2023. "Effects of ambient temperature and wind speed on icing characteristics and anti-icing energy demand of a blade airfoil for wind turbine," Renewable Energy, Elsevier, vol. 217(C).
- Chang Cai & Jicai Guo & Xiaowen Song & Yanfeng Zhang & Jianxin Wu & Shufeng Tang & Yan Jia & Zhitai Xing & Qing’an Li, 2023. "Review of Data-Driven Approaches for Wind Turbine Blade Icing Detection," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
- Sun, Haoyang & Lin, Guiping & Jin, Haichuan & Guo, Jinghui & Ge, Kun & Wang, Jiaqi & He, Xi & Wen, Dongsheng, 2023. "2D Numerical investigation of surface wettability induced liquid water flow on the surface of the NACA0012 airfoil," Renewable Energy, Elsevier, vol. 205(C), pages 326-339.
- Sun, Haoyang & Lin, Guiping & Jin, Haichuan & Bu, Xueqin & Cai, Chujiang & Jia, Qi & Ma, Kuiyuan & Wen, Dongsheng, 2021. "Experimental investigation of surface wettability induced anti-icing characteristics in an ice wind tunnel," Renewable Energy, Elsevier, vol. 179(C), pages 1179-1190.
- Tao, Cheng & Tao, Tao & He, Shukai & Bai, Xinjian & Liu, Yongqian, 2024. "Wind turbine blade icing diagnosis using B-SMOTE-Bi-GRU and RFE combined with icing mechanism," Renewable Energy, Elsevier, vol. 221(C).
- Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
- Wang, Bingkai & Sun, Wenlei & Wang, Hongwei & Xu, Tiantian & Zou, Yi, 2024. "Research on rapid calculation method of wind turbine blade strain for digital twin," Renewable Energy, Elsevier, vol. 221(C).
- Li, Chaofan & Song, Yajing & Xu, Long & Zhao, Ning & Wang, Fan & Fang, Lide & Li, Xiaoting, 2022. "Prediction of the interfacial disturbance wave velocity in vertical upward gas-liquid annular flow via ensemble learning," Energy, Elsevier, vol. 242(C).
- Chen, Zhiqiang & Li, Jianbin & Cheng, Long & Liu, Xiufeng, 2023. "Federated-WDCGAN: A federated smart meter data sharing framework for privacy preservation," Applied Energy, Elsevier, vol. 334(C).
- Hongye pan, & Jia, Changyuan & Li, Haobo & Zhou, Xianzheng & Fang, Zheng & Wu, Xiaoping & Zhang, Zutao, 2022. "A renewable energy harvesting wind barrier based on coaxial contrarotation for self-powered applications on railways," Energy, Elsevier, vol. 258(C).
- Junshuai Yan & Yongqian Liu & Xiaoying Ren, 2023. "An Early Fault Detection Method for Wind Turbine Main Bearings Based on Self-Attention GRU Network and Binary Segmentation Changepoint Detection Algorithm," Energies, MDPI, vol. 16(10), pages 1-23, May.
- Wen, Hanguan & Liu, Xiufeng & Lei, Bo & Yang, Ming & Cheng, Xu & Chen, Zhe, 2025. "A privacy-preserving heterogeneous federated learning framework with class imbalance learning for electricity theft detection," Applied Energy, Elsevier, vol. 378(PA).
- Junshuai Yan & Yongqian Liu & Xiaoying Ren & Li Li, 2023. "Wind Turbine Gearbox Condition Monitoring Using Hybrid Attentions and Spatio-Temporal BiConvLSTM Network," Energies, MDPI, vol. 16(19), pages 1-22, September.
- Tang, Huakang & Wang, Honglei & Li, Chengjiang, 2025. "Time-varying cost modeling and maintenance strategy optimization of plateau wind turbines considering degradation states," Applied Energy, Elsevier, vol. 377(PA).
- Cheng, Xu & Shi, Fan & Liu, Yongping & Liu, Xiufeng & Huang, Lizhen, 2022. "Wind turbine blade icing detection: a federated learning approach," Energy, Elsevier, vol. 254(PC).
- Shahzad Ali, Qazi & Kim, Man-Hoe, 2022. "Quantifying impacts of shell augmentation on power output of airborne wind energy system at elevated heights," Energy, Elsevier, vol. 239(PA).
- Wang, Qiang & Yi, Xian & Liu, Yu & Ren, Jinghao & Yang, Jianjun & Chen, Ningli, 2024. "Numerical investigation of dynamic icing of wind turbine blades under wind shear conditions," Renewable Energy, Elsevier, vol. 227(C).
- Bai, Xinjian & Tao, Tao & Gao, Linyue & Tao, Cheng & Liu, Yongqian, 2023. "Wind turbine blade icing diagnosis using RFECV-TSVM pseudo-sample processing," Renewable Energy, Elsevier, vol. 211(C), pages 412-419.
- Guo, Wenfeng & Shen, He & Li, Yan & Feng, Fang & Tagawa, Kotaro, 2021. "Wind tunnel tests of the rime icing characteristics of a straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 179(C), pages 116-132.
More about this item
Keywords
background oriented schlieren; plasma actuators; dielectric barrier discharge; deicing; thermal characterization; wind turbines;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:540-:d:1023785. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.