IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v195y2022icp795-808.html
   My bibliography  Save this article

Combined empirical and machine learning modeling method for estimation of daily global solar radiation for general meteorological observation stations

Author

Listed:
  • Zang, Haixiang
  • Jiang, Xin
  • Cheng, LiLin
  • Zhang, Fengchun
  • Wei, Zhinong
  • Sun, Guoqiang

Abstract

Daily global solar radiation (H) is practically significant for human production and life, especially for solar power generation. Due to the high construction and maintenance cost of solar radiation observation equipment, solar radiation measurement cannot be easily obtained at many sites. In addition, the H estimation fitting model cannot be directly trained in the absence of site-specific historical data of H. Therefore, in this study, the H estimation modeling method is proposed specifically for the sites that cannot afford to install solar radiation measurement equipment. The method includes a novel coding method based on information gain, Pearson correlation coefficient, and principal component analysis (PCA), which analyzes the nonlinear and high-dimensional correlation between meteorological factors and solar radiation to decide the correlation of adjacent sites. Based on the results of the coding method, a hybrid H estimation model combining empirical and machine learning is proposed, which takes the empirical model as the base model, and the machine learning model adaptively assigns the corresponding weights to estimate H. The case studies show the proposed hybrid model outperforms the benchmark models and indicate that the H estimation modeling method can be applied to different regions without solar radiation measurement.

Suggested Citation

  • Zang, Haixiang & Jiang, Xin & Cheng, LiLin & Zhang, Fengchun & Wei, Zhinong & Sun, Guoqiang, 2022. "Combined empirical and machine learning modeling method for estimation of daily global solar radiation for general meteorological observation stations," Renewable Energy, Elsevier, vol. 195(C), pages 795-808.
  • Handle: RePEc:eee:renene:v:195:y:2022:i:c:p:795-808
    DOI: 10.1016/j.renene.2022.06.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122008953
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.06.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El-Sebaii, A.A. & Al-Ghamdi, A.A. & Al-Hazmi, F.S. & Faidah, Adel S., 2009. "Estimation of global solar radiation on horizontal surfaces in Jeddah, Saudi Arabia," Energy Policy, Elsevier, vol. 37(9), pages 3645-3649, September.
    2. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    3. Jahani, Babak & Dinpashoh, Y. & Raisi Nafchi, Atefeh, 2017. "Evaluation and development of empirical models for estimating daily solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 878-891.
    4. Bakirci, Kadir, 2009. "Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey," Energy, Elsevier, vol. 34(4), pages 485-501.
    5. Zang, Haixiang & Xu, Ruiqi & Cheng, Lilin & Ding, Tao & Liu, Ling & Wei, Zhinong & Sun, Guoqiang, 2021. "Residential load forecasting based on LSTM fusing self-attention mechanism with pooling," Energy, Elsevier, vol. 229(C).
    6. Fan, Junliang & Chen, Baiquan & Wu, Lifeng & Zhang, Fucang & Lu, Xianghui & Xiang, Youzhen, 2018. "Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions," Energy, Elsevier, vol. 144(C), pages 903-914.
    7. Korachagaon, Iranna & Bapat, V.N., 2012. "General formula for the estimation of global solar radiation on earth’s surface around the globe," Renewable Energy, Elsevier, vol. 41(C), pages 394-400.
    8. Ajith, Meenu & Martínez-Ramón, Manel, 2021. "Deep learning based solar radiation micro forecast by fusion of infrared cloud images and radiation data," Applied Energy, Elsevier, vol. 294(C).
    9. Chen, Ji-Long & He, Lei & Yang, Hong & Ma, Maohua & Chen, Qiao & Wu, Sheng-Jun & Xiao, Zuo-lin, 2019. "Empirical models for estimating monthly global solar radiation: A most comprehensive review and comparative case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 91-111.
    10. Jebli, Imane & Belouadha, Fatima-Zahra & Kabbaj, Mohammed Issam & Tilioua, Amine, 2021. "Prediction of solar energy guided by pearson correlation using machine learning," Energy, Elsevier, vol. 224(C).
    11. Besharat, Fariba & Dehghan, Ali A. & Faghih, Ahmad R., 2013. "Empirical models for estimating global solar radiation: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 798-821.
    12. Zang, Haixiang & Liu, Ling & Sun, Li & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2020. "Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations," Renewable Energy, Elsevier, vol. 160(C), pages 26-41.
    13. Kaba, Kazım & Sarıgül, Mehmet & Avcı, Mutlu & Kandırmaz, H. Mustafa, 2018. "Estimation of daily global solar radiation using deep learning model," Energy, Elsevier, vol. 162(C), pages 126-135.
    14. Ododo, J.C. & Sulaiman, A.T. & Aidan, J. & Yuguda, M.M. & Ogbu, F.A., 1995. "The importance of maximum air temperature in the parameterisation of solar radiation in Nigeria," Renewable Energy, Elsevier, vol. 6(7), pages 751-763.
    15. Qin, Jun & Chen, Zhuoqi & Yang, Kun & Liang, Shunlin & Tang, Wenjun, 2011. "Estimation of monthly-mean daily global solar radiation based on MODIS and TRMM products," Applied Energy, Elsevier, vol. 88(7), pages 2480-2489, July.
    16. Bayrakçı, Hilmi Cenk & Demircan, Cihan & Keçebaş, Ali, 2018. "The development of empirical models for estimating global solar radiation on horizontal surface: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2771-2782.
    17. Zang, Haixiang & Cheng, Lilin & Ding, Tao & Cheung, Kwok W. & Wang, Miaomiao & Wei, Zhinong & Sun, Guoqiang, 2020. "Application of functional deep belief network for estimating daily global solar radiation: A case study in China," Energy, Elsevier, vol. 191(C).
    18. Pan, Tao & Wu, Shaohong & Dai, Erfu & Liu, Yujie, 2013. "Estimating the daily global solar radiation spatial distribution from diurnal temperature ranges over the Tibetan Plateau in China," Applied Energy, Elsevier, vol. 107(C), pages 384-393.
    19. Hassan, Gasser E. & Youssef, M. Elsayed & Mohamed, Zahraa E. & Ali, Mohamed A. & Hanafy, Ahmed A., 2016. "New Temperature-based Models for Predicting Global Solar Radiation," Applied Energy, Elsevier, vol. 179(C), pages 437-450.
    20. Zang, Haixiang & Cheng, Lilin & Ding, Tao & Cheung, Kwok W. & Wang, Miaomiao & Wei, Zhinong & Sun, Guoqiang, 2019. "Estimation and validation of daily global solar radiation by day of the year-based models for different climates in China," Renewable Energy, Elsevier, vol. 135(C), pages 984-1003.
    21. Narvaez, Gabriel & Giraldo, Luis Felipe & Bressan, Michael & Pantoja, Andres, 2021. "Machine learning for site-adaptation and solar radiation forecasting," Renewable Energy, Elsevier, vol. 167(C), pages 333-342.
    22. Bahel, V. & Bakhsh, H. & Srinivasan, R., 1987. "A correlation for estimation of global solar radiation," Energy, Elsevier, vol. 12(2), pages 131-135.
    23. Adaramola, Muyiwa S., 2012. "Estimating global solar radiation using common meteorological data in Akure, Nigeria," Renewable Energy, Elsevier, vol. 47(C), pages 38-44.
    24. Feng, Lan & Lin, Aiwen & Wang, Lunche & Qin, Wenmin & Gong, Wei, 2018. "Evaluation of sunshine-based models for predicting diffuse solar radiation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 168-182.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jingxuan & Zang, Haixiang & Ding, Tao & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2023. "Harvesting spatiotemporal correlation from sky image sequence to improve ultra-short-term solar irradiance forecasting," Renewable Energy, Elsevier, vol. 209(C), pages 619-631.
    2. Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2024. "An interpretable framework for modeling global solar radiation using tree-based ensemble machine learning and Shapley additive explanations methods," Applied Energy, Elsevier, vol. 364(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prieto, Jesús-Ignacio & García, David, 2022. "Global solar radiation models: A critical review from the point of view of homogeneity and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    2. Chen, Ji-Long & He, Lei & Yang, Hong & Ma, Maohua & Chen, Qiao & Wu, Sheng-Jun & Xiao, Zuo-lin, 2019. "Empirical models for estimating monthly global solar radiation: A most comprehensive review and comparative case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 91-111.
    3. Feng, Yu & Hao, Weiping & Li, Haoru & Cui, Ningbo & Gong, Daozhi & Gao, Lili, 2020. "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    4. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Zeng, Wenzhi & Wang, Xiukang & Zou, Haiyang, 2019. "Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 186-212.
    5. Zhang, Jianyuan & Zhao, Li & Deng, Shuai & Xu, Weicong & Zhang, Ying, 2017. "A critical review of the models used to estimate solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 314-329.
    6. Qiu, Rangjian & Li, Longan & Wu, Lifeng & Agathokleous, Evgenios & Liu, Chunwei & Zhang, Baozhong & Luo, Yufeng & Sun, Shanlei, 2022. "Modeling daily global solar radiation using only temperature data: Past, development, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    7. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    8. Teke, Ahmet & Yıldırım, H. Başak & Çelik, Özgür, 2015. "Evaluation and performance comparison of different models for the estimation of solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1097-1107.
    9. Zang, Haixiang & Cheng, Lilin & Ding, Tao & Cheung, Kwok W. & Wang, Miaomiao & Wei, Zhinong & Sun, Guoqiang, 2020. "Application of functional deep belief network for estimating daily global solar radiation: A case study in China," Energy, Elsevier, vol. 191(C).
    10. Mecibah, Mohamed Salah & Boukelia, Taqiy Eddine & Tahtah, Reda & Gairaa, Kacem, 2014. "Introducing the best model for estimation the monthly mean daily global solar radiation on a horizontal surface (Case study: Algeria)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 194-202.
    11. Guosheng Duan & Lifeng Wu & Fa Liu & Yicheng Wang & Shaofei Wu, 2022. "Improvement in Solar-Radiation Forecasting Based on Evolutionary KNEA Method and Numerical Weather Prediction," Sustainability, MDPI, vol. 14(11), pages 1-20, June.
    12. Zhigao Zhou & Aiwen Lin & Lijie He & Lunche Wang, 2022. "Evaluation of Various Tree-Based Ensemble Models for Estimating Solar Energy Resource Potential in Different Climatic Zones of China," Energies, MDPI, vol. 15(9), pages 1-23, May.
    13. Ağbulut, Ümit & Gürel, Ali Etem & Biçen, Yunus, 2021. "Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Meenal, R. & Selvakumar, A. Immanuel, 2018. "Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters," Renewable Energy, Elsevier, vol. 121(C), pages 324-343.
    15. Almorox, Javier & Arnaldo, J.A. & Bailek, Nadjem & Martí, Pau, 2020. "Adjustment of the Angstrom-Prescott equation from Campbell-Stokes and Kipp-Zonen sunshine measures at different timescales in Spain," Renewable Energy, Elsevier, vol. 154(C), pages 337-350.
    16. Fan, Junliang & Chen, Baiquan & Wu, Lifeng & Zhang, Fucang & Lu, Xianghui & Xiang, Youzhen, 2018. "Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions," Energy, Elsevier, vol. 144(C), pages 903-914.
    17. Bayrakçı, Hilmi Cenk & Demircan, Cihan & Keçebaş, Ali, 2018. "The development of empirical models for estimating global solar radiation on horizontal surface: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2771-2782.
    18. Yang, Liu & Cao, Qimeng & Yu, Ying & Liu, Yan, 2020. "Comparison of daily diffuse radiation models in regions of China without solar radiation measurement," Energy, Elsevier, vol. 191(C).
    19. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms," Applied Energy, Elsevier, vol. 316(C).
    20. Qin, Shujing & Liu, Zhihe & Qiu, Rangjian & Luo, Yufeng & Wu, Jingwei & Zhang, Baozhong & Wu, Lifeng & Agathokleous, Evgenios, 2023. "Short–term global solar radiation forecasting based on an improved method for sunshine duration prediction and public weather forecasts," Applied Energy, Elsevier, vol. 343(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:195:y:2022:i:c:p:795-808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.