IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v196y2022icp648-682.html
   My bibliography  Save this article

Multifaceted irradiance prediction by exploiting hybrid decomposition-entropy-Spatiotemporal attention based Sequence2Sequence models

Author

Listed:
  • Sibtain, Muhammad
  • Li, Xianshan
  • Saleem, Snoober
  • Ain, Qurat-ul-
  • Shi, Qiang
  • Li, Fei
  • Saeed, Muhammad
  • Majeed, Fatima
  • Shah, Syed Shoaib Ahmed
  • Saeed, Muhammad Hammad

Abstract

Accurate prediction models enable the efficacious utilization and integration of solar energy into the power system. Therefore, this study aims to develop novel hybrid prediction models by employing correlation analysis (CA), decomposition techniques, sample entropy (SE), and spatio-temporal attention (STA) based sequence2sequence (S2S) algorithm for accurate prediction of global horizontal irradiance (GHI). The decomposition techniques include variational mode decomposition (VMD), improved complete ensemble empirical mode decomposition with additive noise (ICEEMDAN), and maximum overlap discrete wavelet transform (MODWT). The VMD-STA-S2S hybrid model surmounts the associated hybrid and standalone prediction models by revealing the highest prediction efficiency and the lowest error. Compared to the SARIMAX, SVR, ANN, XGB, GRU, LSTM, and S2S models, the VMD-STA-S2S model reduced RMSE during testing by 80.927 W/m2, 75.426 W/m2, 73.487 W/m2, 62.394 W/m2, 57.811 W/m2, 52.007 W/m2, and 41.836 W/m2, respectively. Similarly, the reductions in RMSE by VMD-STA-S2S model compared to SA-S2S, TA-S2S, STA-S2S, MODWT-STA-S2S, ICEEMDAN-STA-S2S, ICEEMDAN-SE-STA-S2S, and VMD-SE-STA-S2S models are 24.054 W/m2, 20.951 W/m2, 12.702 W/m2, 15.396 W/m2, 9.921 W/m2, 6.103 W/m2 and 0.484 W/m2, respectively, during testing. Furthermore, considering NSE during testing, the VMD-STA-S2S model is 8.66%, 7.72%, 7.41%, 5.71%, 5.07%, 4.31%, 3.11%, 1.43%, 1.19%, 0.64%, 0.81%, 0.47%, 0.35% and 0.07%, more efficient than the SARIMAX, SVR, ANN, XGB, GRU, LSTM, S2S, SA-S2S, TA-S2S, STA-S2S, MODWT-STA-S2S, ICEEMDAN-STA-S2S, ICEEMDAN-SE-STA-S2S, and VMD-SE-STA-S2S models, respectively. The superior performance of VMD-STA-S2S over its counterparts corroborates the integration of the VMD technique and STA-based S2S algorithm for GHI prediction. The multivariate meteorological data of this study is decomposed by VMD into subcomponents more effectively than the ICEEMDAN and MODWT techniques. VMD decomposed subcomponents are further fed to the STA-S2S to efficiently extract and learn the spatial and temporal features, resulting in the enhanced and superior prediction outcomes of the VMD-STA-S2S model compared to all the counterpart models. Besides GHI prediction, the proposed model is also appropriate for other time-series data, including renewable energy, electrical load, and environment monitoring.

Suggested Citation

  • Sibtain, Muhammad & Li, Xianshan & Saleem, Snoober & Ain, Qurat-ul- & Shi, Qiang & Li, Fei & Saeed, Muhammad & Majeed, Fatima & Shah, Syed Shoaib Ahmed & Saeed, Muhammad Hammad, 2022. "Multifaceted irradiance prediction by exploiting hybrid decomposition-entropy-Spatiotemporal attention based Sequence2Sequence models," Renewable Energy, Elsevier, vol. 196(C), pages 648-682.
  • Handle: RePEc:eee:renene:v:196:y:2022:i:c:p:648-682
    DOI: 10.1016/j.renene.2022.07.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122010369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumari, Pratima & Toshniwal, Durga, 2021. "Long short term memory–convolutional neural network based deep hybrid approach for solar irradiance forecasting," Applied Energy, Elsevier, vol. 295(C).
    2. Narvaez, Gabriel & Giraldo, Luis Felipe & Bressan, Michael & Pantoja, Andres, 2021. "Machine learning for site-adaptation and solar radiation forecasting," Renewable Energy, Elsevier, vol. 167(C), pages 333-342.
    3. Ghimire, Sujan & Deo, Ravinesh C. & Raj, Nawin & Mi, Jianchun, 2019. "Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Ghimire, Sujan & Deo, Ravinesh C. & Raj, Nawin & Mi, Jianchun, 2019. "Wavelet-based 3-phase hybrid SVR model trained with satellite-derived predictors, particle swarm optimization and maximum overlap discrete wavelet transform for solar radiation prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Nguyen, Hoang-Phuong & Baraldi, Piero & Zio, Enrico, 2021. "Ensemble empirical mode decomposition and long short-term memory neural network for multi-step predictions of time series signals in nuclear power plants," Applied Energy, Elsevier, vol. 283(C).
    6. Tyler McCandless & Pedro Angel Jiménez, 2020. "Examining the Potential of a Random Forest Derived Cloud Mask from GOES-R Satellites to Improve Solar Irradiance Forecasting," Energies, MDPI, vol. 13(7), pages 1-15, April.
    7. Kushwaha, Vishal & Pindoriya, Naran M., 2019. "A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV power generation forecast," Renewable Energy, Elsevier, vol. 140(C), pages 124-139.
    8. Huang, Weinan & Dong, Sheng, 2021. "Improved short-term prediction of significant wave height by decomposing deterministic and stochastic components," Renewable Energy, Elsevier, vol. 177(C), pages 743-758.
    9. Liu, Da & Sun, Kun, 2019. "Random forest solar power forecast based on classification optimization," Energy, Elsevier, vol. 187(C).
    10. Jessica Wojtkiewicz & Matin Hosseini & Raju Gottumukkala & Terrence Lynn Chambers, 2019. "Hour-Ahead Solar Irradiance Forecasting Using Multivariate Gated Recurrent Units," Energies, MDPI, vol. 12(21), pages 1-13, October.
    11. Sujan Ghimire & Ravinesh C. Deo & Hua Wang & Mohanad S. Al-Musaylh & David Casillas-Pérez & Sancho Salcedo-Sanz, 2022. "Stacked LSTM Sequence-to-Sequence Autoencoder with Feature Selection for Daily Solar Radiation Prediction: A Review and New Modeling Results," Energies, MDPI, vol. 15(3), pages 1-39, January.
    12. Visser, Lennard & AlSkaif, Tarek & van Sark, Wilfried, 2022. "Operational day-ahead solar power forecasting for aggregated PV systems with a varying spatial distribution," Renewable Energy, Elsevier, vol. 183(C), pages 267-282.
    13. Jebli, Imane & Belouadha, Fatima-Zahra & Kabbaj, Mohammed Issam & Tilioua, Amine, 2021. "Prediction of solar energy guided by pearson correlation using machine learning," Energy, Elsevier, vol. 224(C).
    14. Zhang, Shuai & Chen, Yong & Xiao, Jiuhong & Zhang, Wenyu & Feng, Ruijun, 2021. "Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism," Renewable Energy, Elsevier, vol. 174(C), pages 688-704.
    15. Gao, Bixuan & Huang, Xiaoqiao & Shi, Junsheng & Tai, Yonghang & Zhang, Jun, 2020. "Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks," Renewable Energy, Elsevier, vol. 162(C), pages 1665-1683.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiu-Yan, Gao & Jie-Mei, Liu & Yuan, Yuan & He-Ping, Tan, 2024. "Global horizontal irradiance prediction model considering the effect of aerosol optical depth based on the Informer model," Renewable Energy, Elsevier, vol. 220(C).
    2. Gao, Xiu-Yan & Huang, Chun-Lin & Zhang, Zhen-Huan & Chen, Qi-Xiang & Zheng, Yu & Fu, Di-Song & Yuan, Yuan, 2024. "Global horizontal irradiance prediction model for multi-site fusion under different aerosol types," Renewable Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elizabeth Michael, Neethu & Hasan, Shazia & Al-Durra, Ahmed & Mishra, Manohar, 2022. "Short-term solar irradiance forecasting based on a novel Bayesian optimized deep Long Short-Term Memory neural network," Applied Energy, Elsevier, vol. 324(C).
    2. Nourani, Vahid & Sharghi, Elnaz & Behfar, Nazanin & Zhang, Yongqiang, 2022. "Multi-step-ahead solar irradiance modeling employing multi-frequency deep learning models and climatic data," Applied Energy, Elsevier, vol. 315(C).
    3. Vu, Ba Hau & Chung, Il-Yop, 2022. "Optimal generation scheduling and operating reserve management for PV generation using RNN-based forecasting models for stand-alone microgrids," Renewable Energy, Elsevier, vol. 195(C), pages 1137-1154.
    4. Cheng, Lilin & Zang, Haixiang & Wei, Zhinong & Zhang, Fengchun & Sun, Guoqiang, 2022. "Evaluation of opaque deep-learning solar power forecast models towards power-grid applications," Renewable Energy, Elsevier, vol. 198(C), pages 960-972.
    5. Korkmaz, Deniz, 2021. "SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 300(C).
    6. Xu, Shaozhen & Liu, Jun & Huang, Xiaoqiao & Li, Chengli & Chen, Zaiqing & Tai, Yonghang, 2024. "Minutely multi-step irradiance forecasting based on all-sky images using LSTM-InformerStack hybrid model with dual feature enhancement," Renewable Energy, Elsevier, vol. 224(C).
    7. Acikgoz, Hakan, 2022. "A novel approach based on integration of convolutional neural networks and deep feature selection for short-term solar radiation forecasting," Applied Energy, Elsevier, vol. 305(C).
    8. Scott, Connor & Ahsan, Mominul & Albarbar, Alhussein, 2023. "Machine learning for forecasting a photovoltaic (PV) generation system," Energy, Elsevier, vol. 278(C).
    9. Putri Nor Liyana Mohamad Radzi & Muhammad Naveed Akhter & Saad Mekhilef & Noraisyah Mohamed Shah, 2023. "Review on the Application of Photovoltaic Forecasting Using Machine Learning for Very Short- to Long-Term Forecasting," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    10. Zhao, Wei & Zhang, Haoran & Zheng, Jianqin & Dai, Yuanhao & Huang, Liqiao & Shang, Wenlong & Liang, Yongtu, 2021. "A point prediction method based automatic machine learning for day-ahead power output of multi-region photovoltaic plants," Energy, Elsevier, vol. 223(C).
    11. Hoyos-Gómez, Laura S. & Ruiz-Muñoz, Jose F. & Ruiz-Mendoza, Belizza J., 2022. "Short-term forecasting of global solar irradiance in tropical environments with incomplete data," Applied Energy, Elsevier, vol. 307(C).
    12. Gupta, Priya & Singh, Rhythm, 2023. "Combining a deep learning model with multivariate empirical mode decomposition for hourly global horizontal irradiance forecasting," Renewable Energy, Elsevier, vol. 206(C), pages 908-927.
    13. Jiang, Chengcheng & Zhu, Qunzhi, 2023. "Evaluating the most significant input parameters for forecasting global solar radiation of different sequences based on Informer," Applied Energy, Elsevier, vol. 348(C).
    14. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention," Applied Energy, Elsevier, vol. 321(C).
    15. Neethu Elizabeth Michael & Manohar Mishra & Shazia Hasan & Ahmed Al-Durra, 2022. "Short-Term Solar Power Predicting Model Based on Multi-Step CNN Stacked LSTM Technique," Energies, MDPI, vol. 15(6), pages 1-20, March.
    16. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    17. Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
    18. Hongchao Zhang & Tengteng Zhu, 2022. "Stacking Model for Photovoltaic-Power-Generation Prediction," Sustainability, MDPI, vol. 14(9), pages 1-16, May.
    19. Nawin Raj, 2022. "Prediction of Sea Level with Vertical Land Movement Correction Using Deep Learning," Mathematics, MDPI, vol. 10(23), pages 1-23, November.
    20. Gupta, Priya & Singh, Rhythm, 2023. "Combining simple and less time complex ML models with multivariate empirical mode decomposition to obtain accurate GHI forecast," Energy, Elsevier, vol. 263(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:196:y:2022:i:c:p:648-682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.