IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v187y2022icp603-617.html
   My bibliography  Save this article

An optimized approach for mapping solar irradiance in a mid-low latitude region based on a site-adaptation technique using Himawari-8 satellite imageries

Author

Listed:
  • Han, Jen-Yu
  • Vohnicky, Petr

Abstract

Solar technologies play an important role in the renewable electric energy budget, so accurate solar maps are a crucial point for finding a suitable place for solar panel installation. This study proposes a method for solar irradiance mapping in mid-low latitude regions, and the method's site-adaptation process is performed by optimizing the Heliosat method through the REST2 clear-sky model, cloud albedo selection, new clear-sky index, and linear subtraction for bias removal. A local station with two pyranometers provided ground measurements. Site-adapted model results were used to create a calibrated solar map by linear regression adaptation. This study also provides the evaluation and site-adaption of another irradiance dataset in the Asian region from the Japan Aerospace Exploration Agency (JAXA). Heliosat model results with optimal cloud albedo showed high accuracy of 4.78 W/m2 MBE and 63.11 W/m2 RMSE, which can be improved using the site-adaptation process to 0.71 W/m2 MBE and 57.42 W/m2 RMSE. The selection of an optimal cloud albedo improved the model by approximately 20%. The JAXA dataset obtained a large overestimation of 56.72 W/m2 MBE, thereby highlighting the importance of site adaptation. This research's findings pave a new way for the creation of accurate site-adapted solar maps and databases.

Suggested Citation

  • Han, Jen-Yu & Vohnicky, Petr, 2022. "An optimized approach for mapping solar irradiance in a mid-low latitude region based on a site-adaptation technique using Himawari-8 satellite imageries," Renewable Energy, Elsevier, vol. 187(C), pages 603-617.
  • Handle: RePEc:eee:renene:v:187:y:2022:i:c:p:603-617
    DOI: 10.1016/j.renene.2022.01.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122000271
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.01.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Narvaez, Gabriel & Giraldo, Luis Felipe & Bressan, Michael & Pantoja, Andres, 2021. "Machine learning for site-adaptation and solar radiation forecasting," Renewable Energy, Elsevier, vol. 167(C), pages 333-342.
    2. Antonanzas-Torres, F. & Urraca, R. & Polo, J. & Perpiñán-Lamigueiro, O. & Escobar, R., 2019. "Clear sky solar irradiance models: A review of seventy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 374-387.
    3. Huang, Kuo-Tsang, 2020. "Identifying a suitable hourly solar diffuse fraction model to generate the typical meteorological year for building energy simulation application," Renewable Energy, Elsevier, vol. 157(C), pages 1102-1115.
    4. Hong, Ying-Yi & Apolinario, Gerard Francesco DG. & Chung, Chen-Nien & Lu, Tai-Ken & Chu, Chia-Chi, 2020. "Effect of Taiwan's energy policy on unit commitment in 2025," Applied Energy, Elsevier, vol. 277(C).
    5. Sun, Xixi & Bright, Jamie M. & Gueymard, Christian A. & Acord, Brendan & Wang, Peng & Engerer, Nicholas A., 2019. "Worldwide performance assessment of 75 global clear-sky irradiance models using Principal Component Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 550-570.
    6. Mazorra Aguiar, L. & Polo, J. & Vindel, J.M. & Oliver, A., 2019. "Analysis of satellite derived solar irradiance in islands with site adaptation techniques for improving the uncertainty," Renewable Energy, Elsevier, vol. 135(C), pages 98-107.
    7. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Shanlin & Li, Mengying, 2022. "Improved turbidity estimation from local meteorological data for solar resourcing and forecasting applications," Renewable Energy, Elsevier, vol. 189(C), pages 259-272.
    2. Sun, Xixi & Bright, Jamie M. & Gueymard, Christian A. & Bai, Xinyu & Acord, Brendan & Wang, Peng, 2021. "Worldwide performance assessment of 95 direct and diffuse clear-sky irradiance models using principal component analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Ruiz-Arias, José A., 2023. "SPARTA: Solar parameterization for the radiative transfer of the cloudless atmosphere," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Ruiz-Arias, José A., 2022. "Spectral integration of clear-sky atmospheric transmittance: Review and worldwide performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Ruiz-Arias, José A., 2021. "Aerosol transmittance for clear-sky solar irradiance models: Review and validation of an accurate universal parameterization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Xu, Luting & Long, Enshen & Wei, Jincheng & Cheng, Zhu & Zheng, Hanjie, 2021. "A new approach to determine the optimum tilt angle and orientation of solar collectors in mountainous areas with high altitude," Energy, Elsevier, vol. 237(C).
    7. Nollas, Fernando M. & Salazar, German A. & Gueymard, Christian A., 2023. "Quality control procedure for 1-minute pyranometric measurements of global and shadowband-based diffuse solar irradiance," Renewable Energy, Elsevier, vol. 202(C), pages 40-55.
    8. Paulescu, Eugenia & Paulescu, Marius, 2021. "A new clear sky solar irradiance model," Renewable Energy, Elsevier, vol. 179(C), pages 2094-2103.
    9. Barbón, A. & Fortuny Ayuso, P. & Bayón, L. & Fernández-Rubiera, J.A., 2020. "Predicting beam and diffuse horizontal irradiance using Fourier expansions," Renewable Energy, Elsevier, vol. 154(C), pages 46-57.
    10. Salamalikis, Vasileios & Tzoumanikas, Panayiotis & Argiriou, Athanassios A. & Kazantzidis, Andreas, 2022. "Site adaptation of global horizontal irradiance from the Copernicus Atmospheric Monitoring Service for radiation using supervised machine learning techniques," Renewable Energy, Elsevier, vol. 195(C), pages 92-106.
    11. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    12. Wu, Junqi & Niu, Zhibin & Li, Xiang & Huang, Lizhen & Nielsen, Per Sieverts & Liu, Xiufeng, 2023. "Understanding multi-scale spatiotemporal energy consumption data: A visual analysis approach," Energy, Elsevier, vol. 263(PD).
    13. Hasret Sahin & A. A. Solomon & Arman Aghahosseini & Christian Breyer, 2024. "Systemwide energy return on investment in a sustainable transition towards net zero power systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Taghizadeh-Hesary, Farhad & Rasoulinezhad, Ehsan & Shahbaz, Muhammad & Vinh Vo, Xuan, 2021. "How energy transition and power consumption are related in Asian economies with different income levels?," Energy, Elsevier, vol. 237(C).
    15. Róbert Csalódi & Tímea Czvetkó & Viktor Sebestyén & János Abonyi, 2022. "Sectoral Analysis of Energy Transition Paths and Greenhouse Gas Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    16. Tomasz Rokicki & Radosław Jadczak & Adam Kucharski & Piotr Bórawski & Aneta Bełdycka-Bórawska & András Szeberényi & Aleksandra Perkowska, 2022. "Changes in Energy Consumption and Energy Intensity in EU Countries as a Result of the COVID-19 Pandemic by Sector and Area Economy," Energies, MDPI, vol. 15(17), pages 1-26, August.
    17. Zhang, Chunxiao & Shen, Chao & Zhang, Yingbo & Sun, Cheng & Chwieduk, Dorota & Kalogirou, Soteris A., 2021. "Optimization of the electricity/heat production of a PV/T system based on spectral splitting with Ag nanofluid," Renewable Energy, Elsevier, vol. 180(C), pages 30-39.
    18. Liu, Xinyu & Yang, Jianping & Yang, Chunhe & Zhang, Zheyuan & Chen, Weizhong, 2023. "Numerical simulation on cavern support of compressed air energy storage(CAES)considering thermo-mechanical coupling effect," Energy, Elsevier, vol. 282(C).
    19. Chung-Hao Chang & Shih-Fang Lo, 2022. "Impact Analysis of a National and Corporate Carbon Emission Reduction Target on Renewable Electricity Use: A Review," Energies, MDPI, vol. 15(5), pages 1-18, February.
    20. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:187:y:2022:i:c:p:603-617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.