IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v195y2022icp92-106.html
   My bibliography  Save this article

Site adaptation of global horizontal irradiance from the Copernicus Atmospheric Monitoring Service for radiation using supervised machine learning techniques

Author

Listed:
  • Salamalikis, Vasileios
  • Tzoumanikas, Panayiotis
  • Argiriou, Athanassios A.
  • Kazantzidis, Andreas

Abstract

Satellite and reanalysis-derived solar products have gained great attention due to the inadequate number of radiometric stations worldwide, however, they are associated with considerable uncertainties. This study deals with the ground-based validation of Global Horizontal Irradiance from CAMS radiation service (GHICAMS) and the application of supervised machine learning algorithms (MLAs) to site-adapt GHICAMS. The validation of GHICAMS against measurements shows significant systematic and dispersion errors for all-sky (nMBE = 4.9% and nRMSE = 15.7%) and cloudy conditions (nMBE = 17.6% and nRMSE = 38.8%). Under clear skies, CAMS performs adequately (nMBE <1% and nRMSE <5%). All MLAs lead to reduced errors for the site-adapted irradiances. MBE is improved by more than 50%, accompanied by significant reductions in RMSE for various solar zenith angles and cloud fractions. The best results are revealed for the tree-based MLAs and especially for Random Forests.

Suggested Citation

  • Salamalikis, Vasileios & Tzoumanikas, Panayiotis & Argiriou, Athanassios A. & Kazantzidis, Andreas, 2022. "Site adaptation of global horizontal irradiance from the Copernicus Atmospheric Monitoring Service for radiation using supervised machine learning techniques," Renewable Energy, Elsevier, vol. 195(C), pages 92-106.
  • Handle: RePEc:eee:renene:v:195:y:2022:i:c:p:92-106
    DOI: 10.1016/j.renene.2022.06.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122008758
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.06.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    2. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    3. Boilley, Alexandre & Wald, Lucien, 2015. "Comparison between meteorological re-analyses from ERA-Interim and MERRA and measurements of daily solar irradiation at surface," Renewable Energy, Elsevier, vol. 75(C), pages 135-143.
    4. Narvaez, Gabriel & Giraldo, Luis Felipe & Bressan, Michael & Pantoja, Andres, 2021. "Machine learning for site-adaptation and solar radiation forecasting," Renewable Energy, Elsevier, vol. 167(C), pages 333-342.
    5. Vamvakas, Ioannis & Salamalikis, Vasileios & Benitez, Daniel & Al-Salaymeh, Ahmed & Bouaichaoui, Sofiane & Yassaa, Noureddine & Guizani, AmenAllah & Kazantzidis, Andreas, 2020. "Estimation of global horizontal irradiance using satellite-derived data across Middle East-North Africa: The role of aerosol optical properties and site-adaptation methodologies," Renewable Energy, Elsevier, vol. 157(C), pages 312-331.
    6. Visser, Ingmar & Speekenbrink, Maarten, 2010. "depmixS4: An R Package for Hidden Markov Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i07).
    7. Vernay, Christophe & Blanc, Philippe & Pitaval, Sébastien, 2013. "Characterizing measurements campaigns for an innovative calibration approach of the global horizontal irradiation estimated by HelioClim-3," Renewable Energy, Elsevier, vol. 57(C), pages 339-347.
    8. Mazorra Aguiar, L. & Polo, J. & Vindel, J.M. & Oliver, A., 2019. "Analysis of satellite derived solar irradiance in islands with site adaptation techniques for improving the uncertainty," Renewable Energy, Elsevier, vol. 135(C), pages 98-107.
    9. Bright, Jamie M. & Sun, Xixi & Gueymard, Christian A. & Acord, Brendan & Wang, Peng & Engerer, Nicholas A., 2020. "Bright-Sun: A globally applicable 1-min irradiance clear-sky detection model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    2. Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
    3. Jun Wang & Jinyong Huang & Yunlong Hu & Qianwen Guo & Shasha Zhang & Jinglin Tian & Yanqin Niu & Ling Ji & Yuzhong Xu & Peijun Tang & Yaqin He & Yuna Wang & Shuya Zhang & Hao Yang & Kang Kang & Xinchu, 2024. "Terminal modifications independent cell-free RNA sequencing enables sensitive early cancer detection and classification," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Han, Jen-Yu & Vohnicky, Petr, 2022. "An optimized approach for mapping solar irradiance in a mid-low latitude region based on a site-adaptation technique using Himawari-8 satellite imageries," Renewable Energy, Elsevier, vol. 187(C), pages 603-617.
    5. Erik Duijvelaar & Jack Gisby & James E. Peters & Harm Jan Bogaard & Jurjan Aman, 2024. "Longitudinal plasma proteomics reveals biomarkers of alveolar-capillary barrier disruption in critically ill COVID-19 patients," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Paweł Teisseyre & Robert A. Kłopotek & Jan Mielniczuk, 2016. "Random Subspace Method for high-dimensional regression with the R package regRSM," Computational Statistics, Springer, vol. 31(3), pages 943-972, September.
    7. Kambezidis, H.D. & Psiloglou, B.E. & Karagiannis, D. & Dumka, U.C. & Kaskaoutis, D.G., 2017. "Meteorological Radiation Model (MRM v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 616-637.
    8. Patrick C Eschenfeldt & Uri Kartoun & Curtis R Heberle & Chung Yin Kong & Norman S Nishioka & Kenney Ng & Sagar Kamarthi & Chin Hur, 2018. "Analysis of factors associated with extended recovery time after colonoscopy," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-16, June.
    9. Rachel Sippy & Daniel F Farrell & Daniel A Lichtenstein & Ryan Nightingale & Megan A Harris & Joseph Toth & Paris Hantztidiamantis & Nicholas Usher & Cinthya Cueva Aponte & Julio Barzallo Aguilar & An, 2020. "Severity Index for Suspected Arbovirus (SISA): Machine learning for accurate prediction of hospitalization in subjects suspected of arboviral infection," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(2), pages 1-20, February.
    10. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
    11. Joshua P White & Simon Dennis & Martin Tomko & Jessica Bell & Stephan Winter, 2021. "Paths to social licence for tracking-data analytics in university research and services," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-19, May.
    12. Jack S. Gisby & Norzawani B. Buang & Artemis Papadaki & Candice L. Clarke & Talat H. Malik & Nicholas Medjeral-Thomas & Damiola Pinheiro & Paige M. Mortimer & Shanice Lewis & Eleanor Sandhu & Stephen , 2022. "Multi-omics identify falling LRRC15 as a COVID-19 severity marker and persistent pro-thrombotic signals in convalescence," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    13. Jimmy Semakula & Rene A. Corner-Thomas & Stephen T. Morris & Hugh T. Blair & Paul R. Kenyon, 2021. "Application of Machine Learning Algorithms to Predict Body Condition Score from Liveweight Records of Mature Romney Ewes," Agriculture, MDPI, vol. 11(2), pages 1-20, February.
    14. A. Jiran Meitei & Akanksha Saini & Bibhuti Bhusan Mohapatra & Kh. Jitenkumar Singh, 2022. "Predicting child anaemia in the North-Eastern states of India: a machine learning approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2949-2962, December.
    15. Schroeders, Ulrich & Watrin, Luc & Wilhelm, Oliver, 2021. "Age-related nuances in knowledge assessment," Intelligence, Elsevier, vol. 85(C).
    16. Sabri Boughorbel & Rashid Al-Ali & Naser Elkum, 2016. "Model Comparison for Breast Cancer Prognosis Based on Clinical Data," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-15, January.
    17. Psiloglou, B.E. & Kambezidis, H.D. & Kaskaoutis, D.G. & Karagiannis, D. & Polo, J.M., 2020. "Comparison between MRM simulations, CAMS and PVGIS databases with measured solar radiation components at the Methoni station, Greece," Renewable Energy, Elsevier, vol. 146(C), pages 1372-1391.
    18. Siddharth Sethi & David Zhang & Sebastian Guelfi & Zhongbo Chen & Sonia Garcia-Ruiz & Emmanuel O. Olagbaju & Mina Ryten & Harpreet Saini & Juan A. Botia, 2022. "Leveraging omic features with F3UTER enables identification of unannotated 3’UTRs for synaptic genes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Michimasa Fujiogi & Yoshihiko Raita & Marcos Pérez-Losada & Robert J. Freishtat & Juan C. Celedón & Jonathan M. Mansbach & Pedro A. Piedra & Zhaozhong Zhu & Carlos A. Camargo & Kohei Hasegawa, 2022. "Integrated relationship of nasopharyngeal airway host response and microbiome associates with bronchiolitis severity," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:195:y:2022:i:c:p:92-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.