IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p3965-d1453596.html
   My bibliography  Save this article

An Enhanced Forecasting Method of Daily Solar Irradiance in Southwestern France: A Hybrid Nonlinear Autoregressive with Exogenous Inputs with Long Short-Term Memory Approach

Author

Listed:
  • Oubah Isman Okieh

    (Electrical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
    Energy and Environment Research Center, University of Djibouti, Djibouti 1904, Djibouti)

  • Serhat Seker

    (Electrical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey)

  • Seckin Gokce

    (BayWa r.e. Solar Projects GmbH, 81925 München, Germany)

  • Martin Dennenmoser

    (BayWa r.e. Solar Projects GmbH, 81925 München, Germany)

Abstract

The increasing global reliance on renewable energy sources, particularly solar energy, underscores the critical importance of accurate solar irradiance forecasting. As solar capacity continues to grow, precise predictions of solar irradiance become essential for optimizing the performance and reliability of photovoltaic (PV) systems. This study introduces a novel hybrid forecasting model that integrates Nonlinear Autoregressive with Exogenous Inputs (NARX) with Long Short-Term Memory (LSTM) networks. The purpose is to enhance the precision of predicting daily solar irradiance in fluctuating meteorological scenarios, particularly in southwestern France. The hybrid model employs the NARX model’s capacity to handle complex non-linear relationships and the LSTM’s aptitude to manage long-term dependencies in time-series data. The performance metrics of the hybrid NARX-LSTM model were thoroughly assessed, revealing a mean absolute error (MAE) of 9.58 W/m 2 , a root mean square error (RMSE) of 16.30 W/m 2 , and a Coefficient of Determination (R 2 ) of 0.997. Consequently, the proposed hybrid model outperforms the benchmark model in all metrics, showing a significant improvement in prediction accuracy and better alignment with the observed data. These results highlight the model’s effectiveness in enhancing forecasting accuracy under unpredictable conditions, improving solar energy integration into power systems, and ensuring more reliable energy predictions.

Suggested Citation

  • Oubah Isman Okieh & Serhat Seker & Seckin Gokce & Martin Dennenmoser, 2024. "An Enhanced Forecasting Method of Daily Solar Irradiance in Southwestern France: A Hybrid Nonlinear Autoregressive with Exogenous Inputs with Long Short-Term Memory Approach," Energies, MDPI, vol. 17(16), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:3965-:d:1453596
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/3965/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/3965/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hasna Hissou & Said Benkirane & Azidine Guezzaz & Mourade Azrour & Abderrahim Beni-Hssane, 2023. "A Novel Machine Learning Approach for Solar Radiation Estimation," Sustainability, MDPI, vol. 15(13), pages 1-21, July.
    2. Ewa Chodakowska & Joanicjusz Nazarko & Łukasz Nazarko & Hesham S. Rabayah & Raed M. Abendeh & Rami Alawneh, 2023. "ARIMA Models in Solar Radiation Forecasting in Different Geographic Locations," Energies, MDPI, vol. 16(13), pages 1-24, June.
    3. Narvaez, Gabriel & Giraldo, Luis Felipe & Bressan, Michael & Pantoja, Andres, 2021. "Machine learning for site-adaptation and solar radiation forecasting," Renewable Energy, Elsevier, vol. 167(C), pages 333-342.
    4. Sharadga, Hussein & Hajimirza, Shima & Balog, Robert S., 2020. "Time series forecasting of solar power generation for large-scale photovoltaic plants," Renewable Energy, Elsevier, vol. 150(C), pages 797-807.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdulrahman Th. Mohammad & Wisam A. M. Al-Shohani, 2024. "Short-Term Prediction of the Solar Photovoltaic Power Output Using Nonlinear Autoregressive Exogenous Inputs and Artificial Neural Network Techniques Under Different Weather Conditions," Energies, MDPI, vol. 17(23), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongchao Zhang & Tengteng Zhu, 2022. "Stacking Model for Photovoltaic-Power-Generation Prediction," Sustainability, MDPI, vol. 14(9), pages 1-16, May.
    2. Cheng, Lilin & Zang, Haixiang & Wei, Zhinong & Zhang, Fengchun & Sun, Guoqiang, 2022. "Evaluation of opaque deep-learning solar power forecast models towards power-grid applications," Renewable Energy, Elsevier, vol. 198(C), pages 960-972.
    3. Zhuoyuan Lyu & Ying Shen & Yu Zhao & Tao Hu, 2023. "Solar Radiation Prediction Based on Conformer-GLaplace-SDAR Model," Sustainability, MDPI, vol. 15(20), pages 1-18, October.
    4. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    5. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    6. Xilong Lin & Yisen Niu & Zixuan Yan & Lianglin Zou & Ping Tang & Jifeng Song, 2024. "Hybrid Photovoltaic Output Forecasting Model with Temporal Convolutional Network Using Maximal Information Coefficient and White Shark Optimizer," Sustainability, MDPI, vol. 16(14), pages 1-20, July.
    7. Piotr Bórawski & Aneta Bełdycka-Bórawska & Zuzana Kapsdorferová & Tomasz Rokicki & Andrzej Parzonko & Lisa Holden, 2024. "Perspectives of Electricity Production from Biogas in the European Union," Energies, MDPI, vol. 17(5), pages 1-26, March.
    8. Sibtain, Muhammad & Li, Xianshan & Saleem, Snoober & Ain, Qurat-ul- & Shi, Qiang & Li, Fei & Saeed, Muhammad & Majeed, Fatima & Shah, Syed Shoaib Ahmed & Saeed, Muhammad Hammad, 2022. "Multifaceted irradiance prediction by exploiting hybrid decomposition-entropy-Spatiotemporal attention based Sequence2Sequence models," Renewable Energy, Elsevier, vol. 196(C), pages 648-682.
    9. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    10. Aurelia Rybak & Aleksandra Rybak & Spas D. Kolev, 2023. "Modeling the Photovoltaic Power Generation in Poland in the Light of PEP2040: An Application of Multiple Regression," Energies, MDPI, vol. 16(22), pages 1-17, November.
    11. Yang, Hufang & Jiang, Ping & Wang, Ying & Li, Hongmin, 2022. "A fuzzy intelligent forecasting system based on combined fuzzification strategy and improved optimization algorithm for renewable energy power generation," Applied Energy, Elsevier, vol. 325(C).
    12. Hou, Guolian & Ke, Yin & Huang, Congzhi, 2021. "A flexible constant power generation scheme for photovoltaic system by error-based active disturbance rejection control and perturb & observe," Energy, Elsevier, vol. 237(C).
    13. Qu, Zhijian & Xu, Juan & Wang, Zixiao & Chi, Rui & Liu, Hanxin, 2021. "Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method," Energy, Elsevier, vol. 227(C).
    14. Jiang, Hou & Lu, Ning & Yao, Ling & Qin, Jun & Liu, Tang, 2023. "Impact of climate changes on the stability of solar energy: Evidence from observations and reanalysis," Renewable Energy, Elsevier, vol. 208(C), pages 726-736.
    15. Siamak Hoseinzadeh & Daniele Groppi & Adriana Scarlet Sferra & Umberto Di Matteo & Davide Astiaso Garcia, 2022. "The PRISMI Plus Toolkit Application to a Grid-Connected Mediterranean Island," Energies, MDPI, vol. 15(22), pages 1-14, November.
    16. Kamil Szostek & Damian Mazur & Grzegorz Drałus & Jacek Kusznier, 2024. "Analysis of the Effectiveness of ARIMA, SARIMA, and SVR Models in Time Series Forecasting: A Case Study of Wind Farm Energy Production," Energies, MDPI, vol. 17(19), pages 1-18, September.
    17. Bashir, Hassan & Sibtain, Muhammad & Hanay, Özge & Azam, Muhammad Imran & Qurat-ul-Ain, & Saleem, Snoober, 2023. "Decomposition and Harris hawks optimized multivariate wind speed forecasting utilizing sequence2sequence-based spatiotemporal attention," Energy, Elsevier, vol. 278(PB).
    18. Mohamed Khalifa Boutahir & Yousef Farhaoui & Mourade Azrour & Ahmed Sedik & Moustafa M. Nasralla, 2024. "Advancing Solar Power Forecasting: Integrating Boosting Cascade Forest and Multi-Class-Grained Scanning for Enhanced Precision," Sustainability, MDPI, vol. 16(17), pages 1-20, August.
    19. Jerome G. Gacu & Junrey D. Garcia & Eddie G. Fetalvero & Merian P. Catajay-Mani & Cris Edward F. Monjardin, 2023. "Suitability Analysis Using GIS-Based Analytic Hierarchy Process (AHP) for Solar Power Exploration," Energies, MDPI, vol. 16(18), pages 1-28, September.
    20. Akhter, Muhammad Naveed & Mekhilef, Saad & Mokhlis, Hazlie & Ali, Raza & Usama, Muhammad & Muhammad, Munir Azam & Khairuddin, Anis Salwa Mohd, 2022. "A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems," Applied Energy, Elsevier, vol. 307(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:3965-:d:1453596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.