IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v202y2024ics136403212400457x.html
   My bibliography  Save this article

Towards random pore model for non-catalytic gas-solid reactions

Author

Listed:
  • Parandin, M.S.
  • Ale Ebrahim, H.
  • Norouzi, H.R.

Abstract

The random pore model (RPM) is the most comprehensive model for non-catalytic gas-solid reactions. The application of RPM is critical in some environmental pollutant removal reactions regarding sustainable energy systems. The common examples are flue gas desulfurization (FGD) by various solid sorbents and carbon capture and storage (CCS) systems, including greenhouse gas separation by carbonation reactions. So far, a review paper about the RPM has not been published in the literature. In this review paper, governing conservation equations for the RPM are presented, and RPM applications in various chemical, environmental, and metallurgical reactions are explained. Then, the paper discusses the method of defining the structural parameter, ψ, as the main parameter of the RPM. The RPM various modifications, such as non-linear concentration dependency, bulk flow effects, and predicting changes in pore size distribution (PSD) during the reaction are explained in detail. Kinetic parameters of various reactions, as mentioned above, are also determined comprehensively by applying the RPM on conversion-time experimental results originating from thermogravimetry (TG). In addition, breakthrough curves obtained using the RPM have been observed for some of the studied reactions in a packed bed reactor. Incomplete conversion is considered for the reactions with Z > 1. According to RPM predictions and experimental data, producing large pores by washing them with a weak acid or using a nanostructure pellet can solve this problem. Also, applications of the RPM to other reactions consisting mainly of gasification and combustion are presented. Finally, machine learning applications for multi-scale modeling of gas-solid reactions are discussed.

Suggested Citation

  • Parandin, M.S. & Ale Ebrahim, H. & Norouzi, H.R., 2024. "Towards random pore model for non-catalytic gas-solid reactions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:rensus:v:202:y:2024:i:c:s136403212400457x
    DOI: 10.1016/j.rser.2024.114731
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212400457X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114731?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zare Ghorbaei, S. & Ale Ebrahim, H., 2020. "Carbonation reaction of strontium oxide for thermochemical energy storage and CO2 removal applications: Kinetic study and reactor performance prediction," Applied Energy, Elsevier, vol. 277(C).
    2. Diedhiou, Ansoumane & Ndiaye, Lat-Grand & Bensakhria, Ammar & Sock, Oumar, 2019. "Thermochemical conversion of cashew nut shells, palm nut shells and peanut shells char with CO2 and/or steam to aliment a clay brick firing unit," Renewable Energy, Elsevier, vol. 142(C), pages 581-590.
    3. Gomez, Arturo & Silbermann, Rico & Mahinpey, Nader, 2014. "A comprehensive experimental procedure for CO2 coal gasification: Is there really a maximum reaction rate?," Applied Energy, Elsevier, vol. 124(C), pages 73-81.
    4. Evgenios Karasavvas & Athanasios Scaltsoyiannes & Andy Antzaras & Kyriakos Fotiadis & Kyriakos Panopoulos & Angeliki Lemonidou & Spyros Voutetakis & Simira Papadopoulou, 2020. "One-Dimensional Heterogeneous Reaction Model of a Drop-Tube Carbonator Reactor for Thermochemical Energy Storage Applications," Energies, MDPI, vol. 13(22), pages 1-24, November.
    5. Wang, Guangwei & Zhang, Jianliang & Shao, Jiugang & Liu, Zhengjian & Wang, Haiyang & Li, Xinyu & Zhang, Pengcheng & Geng, Weiwei & Zhang, Guohua, 2016. "Experimental and modeling studies on CO2 gasification of biomass chars," Energy, Elsevier, vol. 114(C), pages 143-154.
    6. Yousef, Samy & Eimontas, Justas & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2021. "Pyrolysis and gasification kinetic behavior of mango seed shells using TG-FTIR-GC–MS system under N2 and CO2 atmospheres," Renewable Energy, Elsevier, vol. 173(C), pages 733-749.
    7. Korus, Agnieszka & Klimanek, Adam & Sładek, Sławomir & Szlęk, Andrzej & Tilland, Airy & Bertholin, Stéphane & Haugen, Nils Erland L., 2021. "Kinetic parameters of petroleum coke gasification for modelling chemical-looping combustion systems," Energy, Elsevier, vol. 232(C).
    8. Lopez, Gartzen & Alvarez, Jon & Amutio, Maider & Arregi, Aitor & Bilbao, Javier & Olazar, Martin, 2016. "Assessment of steam gasification kinetics of the char from lignocellulosic biomass in a conical spouted bed reactor," Energy, Elsevier, vol. 107(C), pages 493-501.
    9. Youqing Wu & Shiyong Wu & Jinsheng Gao, 2009. "A Study on the Applicability of Kinetic Models for Shenfu Coal Char Gasification with CO 2 at Elevated Temperatures," Energies, MDPI, vol. 2(3), pages 1-11, July.
    10. Gil, M.V. & Riaza, J. & Álvarez, L. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Oxy-fuel combustion kinetics and morphology of coal chars obtained in N2 and CO2 atmospheres in an entrained flow reactor," Applied Energy, Elsevier, vol. 91(1), pages 67-74.
    11. Zare Ghorbaei, S. & Ale Ebrahim, H., 2022. "Comparison of kinetics and thermochemical energy storage capacities of strontium oxide, calcium oxide, and magnesium oxide during carbonation reaction," Renewable Energy, Elsevier, vol. 184(C), pages 765-775.
    12. He, Qing & Gong, Yan & Ding, Lu & Guo, Qinghua & Yoshikawa, Kunio & Yu, Guangsuo, 2021. "Reactivity prediction and mechanism analysis of raw and demineralized coal char gasification," Energy, Elsevier, vol. 229(C).
    13. Zhang, Heng & Li, Junguo & Yang, Xin & Song, Shuangshuang & Wang, Zhiqing & Huang, Jiejie & Zhang, Yongqi & Fang, Yitian, 2020. "Influence of coal ash on CO2 gasification reactivity of corn stalk char," Renewable Energy, Elsevier, vol. 147(P1), pages 2056-2063.
    14. Sun, Zhao & Russell, Christopher K. & Fan, Maohong, 2021. "Effect of calcium ferrites on carbon dioxide gasification reactivity and kinetics of pine wood derived char," Renewable Energy, Elsevier, vol. 163(C), pages 445-452.
    15. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Carbon Dioxide Gasification Kinetics of Char from Rapeseed Oil Press Cake," Energies, MDPI, vol. 13(9), pages 1-12, May.
    16. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues," Energies, MDPI, vol. 13(17), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yousef, Samy & Eimontas, Justas & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2022. "Gasification kinetics of char derived from metallised food packaging plastics waste pyrolysis," Energy, Elsevier, vol. 239(PB).
    2. Hu, Qiang & Yang, Haiping & Wu, Zhiqiang & Lim, C. Jim & Bi, Xiaotao T. & Chen, Hanping, 2019. "Experimental and modeling study of potassium catalyzed gasification of woody char pellet with CO2," Energy, Elsevier, vol. 171(C), pages 678-688.
    3. Nadia Cerone & Francesco Zimbardi, 2021. "Effects of Oxygen and Steam Equivalence Ratios on Updraft Gasification of Biomass," Energies, MDPI, vol. 14(9), pages 1-18, May.
    4. Chen, Zhichao & Qiao, Yanyu & Wu, Xiaolan & Zheng, Yu & Li, Jiawei & Yuan, Zhenhua & Li, Zhengqi, 2023. "Effect of demineralization on pyrolysis semi-coke physical and chemical characteristics and oxy-fuel combustion characteristics," Energy, Elsevier, vol. 262(PB).
    5. Kou, Mingyin & Zuo, Haibin & Ning, Xiaojun & Wang, Guangwei & Hong, Zhibin & Xu, Haifa & Wu, Shengli, 2019. "Thermogravimetric study on gasification kinetics of hydropyrolysis char derived from low rank coal," Energy, Elsevier, vol. 188(C).
    6. Copik, Paulina & Korus, Agnieszka & Szlęk, Andrzej & Ditaranto, Mario, 2023. "A comparative study on thermochemical decomposition of lignocellulosic materials for energy recovery from waste: Monitoring of evolved gases, thermogravimetric, kinetic and surface analyses of produce," Energy, Elsevier, vol. 285(C).
    7. Alejandro Lyons Cerón & Alar Konist, 2023. "Co-Pyrolysis of Woody Biomass and Oil Shale in a Batch Reactor in CO 2 , CO 2 -H 2 O, and Ar Atmospheres," Energies, MDPI, vol. 16(7), pages 1-14, March.
    8. Shengguo Zhao & Liang Ding & Yun Ruan & Bin Bai & Zegang Qiu & Zhiqin Li, 2021. "Experimental and Kinetic Studies on Steam Gasification of a Biomass Char," Energies, MDPI, vol. 14(21), pages 1-23, November.
    9. Andreas Schwabauer & Marco Mancini & Yunus Poyraz & Roman Weber, 2021. "On the Mathematical Modelling of a Moving-Bed Counter-Current Gasifier Fuelled with Wood-Pellets," Energies, MDPI, vol. 14(18), pages 1-24, September.
    10. Mostafa, Mohamed E. & He, Limo & Xu, Jun & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "Investigating the effect of integrated CO2 and H2O on the reactivity and kinetics of biomass pellets oxy-steam combustion using new double parallel volumetric model (DVM)," Energy, Elsevier, vol. 179(C), pages 343-357.
    11. Ding, Haoran & Tong, Sirui & Qi, Zhifu & Liu, Fei & Sun, Shien & Han, Long, 2023. "Syngas production from chemical-looping steam methane reforming: The effect of channel geometry on BaCoO3/CeO2 monolithic oxygen carriers," Energy, Elsevier, vol. 263(PE).
    12. Yousef, Samy & Eimontas, Justas & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2021. "Influence of carbon black filler on pyrolysis kinetic behaviour and TG-FTIR-GC–MS analysis of glass fibre reinforced polymer composites," Energy, Elsevier, vol. 233(C).
    13. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    14. Kim, Ryang-Gyoon & Hwang, Chan-Won & Jeon, Chung-Hwan, 2014. "Kinetics of coal char gasification with CO2: Impact of internal/external diffusion at high temperature and elevated pressure," Applied Energy, Elsevier, vol. 129(C), pages 299-307.
    15. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    16. Li, Shiyuan & Li, Haoyu & Li, Wei & Xu, Mingxin & Eddings, Eric G. & Ren, Qiangqiang & Lu, Qinggang, 2017. "Coal combustion emission and ash formation characteristics at high oxygen concentration in a 1MWth pilot-scale oxy-fuel circulating fluidized bed," Applied Energy, Elsevier, vol. 197(C), pages 203-211.
    17. Zhao, Jingyu & Wang, Tao & Deng, Jun & Shu, Chi-Min & Zeng, Qiang & Guo, Tao & Zhang, Yuxuan, 2020. "Microcharacteristic analysis of CH4 emissions under different conditions during coal spontaneous combustion with high-temperature oxidation and in situ FTIR," Energy, Elsevier, vol. 209(C).
    18. Álvarez, L. & Gharebaghi, M. & Jones, J.M. & Pourkashanian, M. & Williams, A. & Riaza, J. & Pevida, C. & Pis, J.J. & Rubiera, F., 2013. "CFD modeling of oxy-coal combustion: Prediction of burnout, volatile and NO precursors release," Applied Energy, Elsevier, vol. 104(C), pages 653-665.
    19. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues," Energies, MDPI, vol. 13(17), pages 1-12, August.
    20. Zhang, Hang & Deng, Shengxiang & Cao, Xiaolin, 2018. "Density functional theory investigation of gasification mechanism of a lignin dimer with β-5 linkage," Renewable Energy, Elsevier, vol. 115(C), pages 937-945.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:202:y:2024:i:c:s136403212400457x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.