IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v202y2024ics136403212400457x.html
   My bibliography  Save this article

Towards random pore model for non-catalytic gas-solid reactions

Author

Listed:
  • Parandin, M.S.
  • Ale Ebrahim, H.
  • Norouzi, H.R.

Abstract

The random pore model (RPM) is the most comprehensive model for non-catalytic gas-solid reactions. The application of RPM is critical in some environmental pollutant removal reactions regarding sustainable energy systems. The common examples are flue gas desulfurization (FGD) by various solid sorbents and carbon capture and storage (CCS) systems, including greenhouse gas separation by carbonation reactions. So far, a review paper about the RPM has not been published in the literature. In this review paper, governing conservation equations for the RPM are presented, and RPM applications in various chemical, environmental, and metallurgical reactions are explained. Then, the paper discusses the method of defining the structural parameter, ψ, as the main parameter of the RPM. The RPM various modifications, such as non-linear concentration dependency, bulk flow effects, and predicting changes in pore size distribution (PSD) during the reaction are explained in detail. Kinetic parameters of various reactions, as mentioned above, are also determined comprehensively by applying the RPM on conversion-time experimental results originating from thermogravimetry (TG). In addition, breakthrough curves obtained using the RPM have been observed for some of the studied reactions in a packed bed reactor. Incomplete conversion is considered for the reactions with Z > 1. According to RPM predictions and experimental data, producing large pores by washing them with a weak acid or using a nanostructure pellet can solve this problem. Also, applications of the RPM to other reactions consisting mainly of gasification and combustion are presented. Finally, machine learning applications for multi-scale modeling of gas-solid reactions are discussed.

Suggested Citation

  • Parandin, M.S. & Ale Ebrahim, H. & Norouzi, H.R., 2024. "Towards random pore model for non-catalytic gas-solid reactions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:rensus:v:202:y:2024:i:c:s136403212400457x
    DOI: 10.1016/j.rser.2024.114731
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212400457X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114731?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:202:y:2024:i:c:s136403212400457x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.