IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v161y2020icp846-857.html
   My bibliography  Save this article

Quantitative analysis of mass and energy flow in rice straw gasification based on mass and carbon balance

Author

Listed:
  • Pei, Haipeng
  • Jin, Baosheng
  • Huang, Yaji

Abstract

There have been some pilot-scale trials of the fluidized bed and its derivatives for rice and wheat straw gasification in China. Before the industrial promotion, the quantitative data is imperative in preliminary engineering and optimization. A series of experiments were performed on a bench-scale fluidized bed gasifier to obtain data in process in different heat exchange situations. The uncertainty was evaluated and the balance of carbon and mass was performed to verify the quantitative data. Based on the experimental results, the mass and energy flows were established and illustrated in Sankey diagrams. The results show that, as temperature improves from 650 °C to 800 °C, the energy proportion of gas climbs from 27.2 to 64%. When the equivalence ratio decreases, although the calorific value of gas increases from 2.7 to 4.2 MJ/Nm3, the energy proportion of gas does not change much because the gas yield decreases. Finally, the heat exchange, temperature and ER were coupled by interpolation and illustrated in a contour map.

Suggested Citation

  • Pei, Haipeng & Jin, Baosheng & Huang, Yaji, 2020. "Quantitative analysis of mass and energy flow in rice straw gasification based on mass and carbon balance," Renewable Energy, Elsevier, vol. 161(C), pages 846-857.
  • Handle: RePEc:eee:renene:v:161:y:2020:i:c:p:846-857
    DOI: 10.1016/j.renene.2020.08.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120312453
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.08.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pio, D.T. & Tarelho, L.A.C. & Matos, M.A.A., 2017. "Characteristics of the gas produced during biomass direct gasification in an autothermal pilot-scale bubbling fluidized bed reactor," Energy, Elsevier, vol. 120(C), pages 915-928.
    2. Ramin Khezri & Wan Azlina Wan Ab Karim Ghani & Dayang Radiah Awang Biak & Robiah Yunus & Kiman Silas, 2019. "Experimental Evaluation of Napier Grass Gasification in an Autothermal Bubbling Fluidized Bed Reactor," Energies, MDPI, vol. 12(8), pages 1-18, April.
    3. Parihar, Amit Kumar Singh & Hammer, Thomas & Sridhar, G., 2015. "Development and testing of tube type wet ESP for the removal of particulate matter and tar from producer gas," Renewable Energy, Elsevier, vol. 74(C), pages 875-883.
    4. Xiao, Ruirui & Chen, Xueli & Wang, Fuchen & Yu, Guangsuo, 2011. "The physicochemical properties of different biomass ashes at different ashing temperature," Renewable Energy, Elsevier, vol. 36(1), pages 244-249.
    5. Zeng, Xianyang & Ma, Yitai & Ma, Lirong, 2007. "Utilization of straw in biomass energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 976-987, June.
    6. Shi, Xunwang & Zhang, Kaidi & Cheng, Qunpeng & Song, Guangsen & Fan, Guozhi & Li, Jianfen, 2019. "Promoting hydrogen-rich syngas production through catalytic cracking of rape straw using Ni-Fe/PAC-γAl2O3 catalyst," Renewable Energy, Elsevier, vol. 140(C), pages 32-38.
    7. Carvalho, Mariana M.O. & Cardoso, Marcelo & Vakkilainen, Esa K., 2015. "Biomass gasification for natural gas substitution in iron ore pelletizing plants," Renewable Energy, Elsevier, vol. 81(C), pages 566-577.
    8. Link, Siim & Yrjas, Patrik & Hupa, Leena, 2018. "Ash melting behaviour of wheat straw blends with wood and reed," Renewable Energy, Elsevier, vol. 124(C), pages 11-20.
    9. Niu, Miaomiao & Huang, Yaji & Jin, Baosheng & Liang, Shaohua & Dong, Qing & Gu, Haiming & Sun, Rongyue, 2019. "A novel two-stage enriched air biomass gasification for producing low-tar high heating value fuel gas: Pilot verification and performance analysis," Energy, Elsevier, vol. 173(C), pages 511-522.
    10. Im-orb, Karittha & Simasatitkul, Lida & Arpornwichanop, Amornchai, 2016. "Techno-economic analysis of the biomass gasification and Fischer–Tropsch integrated process with off-gas recirculation," Energy, Elsevier, vol. 94(C), pages 483-496.
    11. Sellin, Noeli & Krohl, Diego Ricardo & Marangoni, Cintia & Souza, Ozair, 2016. "Oxidative fast pyrolysis of banana leaves in fluidized bed reactor," Renewable Energy, Elsevier, vol. 96(PA), pages 56-64.
    12. Ajay Kumar & David D. Jones & Milford A. Hanna, 2009. "Thermochemical Biomass Gasification: A Review of the Current Status of the Technology," Energies, MDPI, vol. 2(3), pages 1-26, July.
    13. Li, Fenghai & Yu, Bing & Li, Junguo & Wang, Zhiqing & Guo, Mingxi & Fan, Hongli & Wang, Tao & Fang, Yitian, 2020. "Exploration of potassium migration behavior in straw ashes under reducing atmosphere and its modification by additives," Renewable Energy, Elsevier, vol. 145(C), pages 2286-2295.
    14. Kuo, Hsiu-Po & Hou, Bo-Ren & Huang, An-Ni, 2017. "The influences of the gas fluidization velocity on the properties of bio-oils from fluidized bed pyrolyzer with in-line distillation," Applied Energy, Elsevier, vol. 194(C), pages 279-286.
    15. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Azapagic, Adisa, 2019. "Environmental sustainability of small-scale biomass power technologies for agricultural communities in developing countries," Renewable Energy, Elsevier, vol. 141(C), pages 493-506.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Vargas-Salgado & Elías Hurtado-Pérez & David Alfonso-Solar & Anders Malmquist, 2021. "Empirical Design, Construction, and Experimental Test of a Small-Scale Bubbling Fluidized Bed Reactor," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    2. Xu, Jie & Wang, Ju & Du, Chunhua & Li, Shuaidan & Liu, Xia, 2020. "Understanding fusibility characteristics and flow properties of the biomass and biomass-coal ash samples," Renewable Energy, Elsevier, vol. 147(P1), pages 1352-1357.
    3. Srirangan, Kajan & Akawi, Lamees & Moo-Young, Murray & Chou, C. Perry, 2012. "Towards sustainable production of clean energy carriers from biomass resources," Applied Energy, Elsevier, vol. 100(C), pages 172-186.
    4. Cheng, Wei & Zhu, Youjian & Shao, Jing’ai & Zhang, Wennan & Wu, Guihao & Jiang, Hao & Hu, Junhao & Huang, Zhen & Yang, Haiping & Chen, Hanping, 2021. "Mitigation of ultrafine particulate matter emission from agricultural biomass pellet combustion by the additive of phosphoric acid modified kaolin," Renewable Energy, Elsevier, vol. 172(C), pages 177-187.
    5. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Xia Liu & Juntao Wei & Wei Huo & Guangsuo Yu, 2017. "Gasification under CO 2 –Steam Mixture: Kinetic Model Study Based on Shared Active Sites," Energies, MDPI, vol. 10(11), pages 1-10, November.
    7. Gollmer, Christian & Höfer, Isabel & Kaltschmitt, Martin, 2021. "Laboratory-scale additive content assessment for aluminum-silicate-based wood chip additivation," Renewable Energy, Elsevier, vol. 164(C), pages 1471-1484.
    8. Daimary, Niran & Boruah, Pankaj & Eldiehy, Khalifa S.H. & Pegu, Tapan & Bardhan, Pritam & Bora, Utpal & Mandal, Manabendra & Deka, Dhanapati, 2022. "Musa acuminata peel: A bioresource for bio-oil and by-product utilization as a sustainable source of renewable green catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 187(C), pages 450-462.
    9. Yao, Xiwen & Zheng, Yan & Zhou, Haodong & Xu, Kaili & Xu, Qingwei & Li, Li, 2020. "Effects of biomass blending, ashing temperature and potassium addition on ash sintering behaviour during co-firing of pine sawdust with a Chinese anthracite," Renewable Energy, Elsevier, vol. 147(P1), pages 2309-2320.
    10. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    11. Li, Fenghai & Zhao, Chaoyue & Guo, Qianqian & Li, Yang & Fan, Hongli & Guo, Mingxi & Wu, Lishun & Huang, Jiejie & Fang, Yitian, 2020. "Exploration in ash-deposition (AD) behavior modification of low-rank coal by manure addition," Energy, Elsevier, vol. 208(C).
    12. Francis Chinweuba Eboh & Peter Ahlström & Tobias Richards, 2017. "Exergy Analysis of Solid Fuel-Fired Heat and Power Plants: A Review," Energies, MDPI, vol. 10(2), pages 1-29, February.
    13. Mlonka-Mędrala, Agata & Gołombek, Klaudiusz & Buk, Paulina & Cieślik, Ewelina & Nowak, Wojciech, 2019. "The influence of KCl on biomass ash melting behaviour and high-temperature corrosion of low-alloy steel," Energy, Elsevier, vol. 188(C).
    14. Xiaobo Wang & Anqi Liu & Zengli Zhao & Haibin Li, 2020. "Experimental and Model Study on Raw Biomass Gasification Syngas Conditioning in a Molten NaOH-Na 2 CO 3 Mixture," Energies, MDPI, vol. 13(14), pages 1-16, July.
    15. Delivand, Mitra Kami & Barz, Mirko & Gheewala, Shabbir H. & Sajjakulnukit, Boonrod, 2011. "Economic feasibility assessment of rice straw utilization for electricity generating through combustion in Thailand," Applied Energy, Elsevier, vol. 88(11), pages 3651-3658.
    16. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Lim, C. Jim & Ellis, Naoko & Li, Yong Hua & Watkinson, A. Paul, 2015. "From coal towards renewables: Catalytic/synergistic effects during steam co-gasification of switchgrass and coal in a pilot-scale bubbling fluidized bed," Renewable Energy, Elsevier, vol. 83(C), pages 918-930.
    17. David Bannon & Mirka Deza & Masoud Masoumi & Bahareh Estejab, 2023. "Assessment of Irregular Biomass Particles Fluidization in Bubbling Fluidized Beds," Energies, MDPI, vol. 16(4), pages 1-20, February.
    18. Santa Margarida Santos & Ana Carolina Assis & Leandro Gomes & Catarina Nobre & Paulo Brito, 2022. "Waste Gasification Technologies: A Brief Overview," Waste, MDPI, vol. 1(1), pages 1-26, December.
    19. Gröbl, Thomas & Walter, Heimo & Haider, Markus, 2012. "Biomass steam gasification for production of SNG – Process design and sensitivity analysis," Applied Energy, Elsevier, vol. 97(C), pages 451-461.
    20. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:161:y:2020:i:c:p:846-857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.