IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v74y2015icp875-883.html
   My bibliography  Save this article

Development and testing of tube type wet ESP for the removal of particulate matter and tar from producer gas

Author

Listed:
  • Parihar, Amit Kumar Singh
  • Hammer, Thomas
  • Sridhar, G.

Abstract

This paper reports the development and testing of a state-of-the-art tube type wet electro-static precipitator (ESP) for cleaning producer gas generated through the process of biomass gasification. A wet ESP facilitates the removal of fine particulate matter (less than 1 micron) and tar with the added advantage of low internal power consumption. A tube type wet ESP was designed from first principles and simulations were carried out to prove its performance. Later on a full-fledged wet ESP was designed to process 100 Nm3/hr of gas, and was tested with an existing open top down draft biomass gasification system. Maximum particulate matter removal efficiency of 83% and tar removal efficiency of 62% was achieved. The results were encouraging to the tune that the particulate matter and tar levels were found below the permissible limits (50 mg/Nm3) for naturally aspirated reciprocating engines and thus the proof of concept was established. Nevertheless, the performance fell short of the permissible limits for turbo-charged reciprocating engines. The cause of the same has been identified and further development work is in progress.

Suggested Citation

  • Parihar, Amit Kumar Singh & Hammer, Thomas & Sridhar, G., 2015. "Development and testing of tube type wet ESP for the removal of particulate matter and tar from producer gas," Renewable Energy, Elsevier, vol. 74(C), pages 875-883.
  • Handle: RePEc:eee:renene:v:74:y:2015:i:c:p:875-883
    DOI: 10.1016/j.renene.2014.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114005564
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buragohain, Buljit & Mahanta, Pinakeswar & Moholkar, Vijayanand S., 2010. "Biomass gasification for decentralized power generation: The Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 73-92, January.
    2. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(5), pages 777-788, October.
    3. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(1), pages 151-160, February.
    4. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(4), pages 629-637, August.
    5. Henriksen, Ulrik & Ahrenfeldt, Jesper & Jensen, Torben Kvist & Gøbel, Benny & Bentzen, Jens Dall & Hindsgaul, Claus & Sørensen, Lasse Holst, 2006. "The design, construction and operation of a 75kW two-stage gasifier," Energy, Elsevier, vol. 31(10), pages 1542-1553.
    6. Nouni, M.R. & Mullick, S.C. & Kandpal, T.C., 2008. "Providing electricity access to remote areas in India: An approach towards identifying potential areas for decentralized electricity supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1187-1220, June.
    7. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(3), pages 427-432, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parihar, Amit Kumar Singh & Sethi, Virendra & Banerjee, Rangan, 2019. "Sizing of biomass based distributed hybrid power generation systems in India," Renewable Energy, Elsevier, vol. 134(C), pages 1400-1422.
    2. Parihar, Amit Kumar Singh & Hammer, Thomas & Sridhar, G., 2015. "Development and testing of plate type wet ESP for removal of particulate matter and tar from producer gas," Renewable Energy, Elsevier, vol. 77(C), pages 473-481.
    3. Pei, Haipeng & Jin, Baosheng & Huang, Yaji, 2020. "Quantitative analysis of mass and energy flow in rice straw gasification based on mass and carbon balance," Renewable Energy, Elsevier, vol. 161(C), pages 846-857.
    4. Cheng, Wei & Zhu, Youjian & Shao, Jing’ai & Zhang, Wennan & Wu, Guihao & Jiang, Hao & Hu, Junhao & Huang, Zhen & Yang, Haiping & Chen, Hanping, 2021. "Mitigation of ultrafine particulate matter emission from agricultural biomass pellet combustion by the additive of phosphoric acid modified kaolin," Renewable Energy, Elsevier, vol. 172(C), pages 177-187.
    5. de Oliveira, Diego C. & Lora, Electo E.S. & Venturini, Osvaldo J. & Maya, Diego M.Y. & Garcia-Pérez, Manuel, 2023. "Gas cleaning systems for integrating biomass gasification with Fischer-Tropsch synthesis - A review of impurity removal processes and their sequences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    6. Li, Jian & Tao, Junyu & Yan, Beibei & Jiao, Liguo & Chen, Guanyi & Hu, Jianli, 2021. "Review of microwave-based treatments of biomass gasification tar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sansaniwal, S.K. & Rosen, M.A. & Tyagi, S.K., 2017. "Global challenges in the sustainable development of biomass gasification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 23-43.
    2. Buragohain, Buljit & Mahanta, Pinakeswar & Moholkar, Vijayanand S., 2010. "Biomass gasification for decentralized power generation: The Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 73-92, January.
    3. Krzysztof S. Targiel & Maciej Nowak & Tadeusz Trzaskalik, 2018. "Scheduling non-critical activities using multicriteria approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 585-598, September.
    4. Okitonyumbe Y.F., Joseph & Ulungu, Berthold E.-L., 2013. "Nouvelle caractérisation des solutions efficaces des problèmes d’optimisation combinatoire multi-objectif [New characterization of efficient solution in multi-objective combinatorial optimization]," MPRA Paper 66123, University Library of Munich, Germany.
    5. Amit Kumar & Anila Gupta, 2013. "Mehar’s methods for fuzzy assignment problems with restrictions," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 27-44, March.
    6. Monica Motta & Caterina Sartori, 2020. "Normality and Nondegeneracy of the Maximum Principle in Optimal Impulsive Control Under State Constraints," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 44-71, April.
    7. Chenchen Wu & Dachuan Xu & Donglei Du & Wenqing Xu, 2016. "An approximation algorithm for the balanced Max-3-Uncut problem using complex semidefinite programming rounding," Journal of Combinatorial Optimization, Springer, vol. 32(4), pages 1017-1035, November.
    8. Uzma Ashraf & Hassan Ali & Muhammad Nawaz Chaudry & Irfan Ashraf & Adila Batool & Zafeer Saqib, 2016. "Predicting the Potential Distribution of Olea ferruginea in Pakistan incorporating Climate Change by Using Maxent Model," Sustainability, MDPI, vol. 8(8), pages 1-11, July.
    9. World Bank, 2003. "Argentina : Reforming Policies and Institutions for Efficiency and Equity of Public Expenditures," World Bank Publications - Reports 14637, The World Bank Group.
    10. Brown, Jeffrey R., 2001. "Private pensions, mortality risk, and the decision to annuitize," Journal of Public Economics, Elsevier, vol. 82(1), pages 29-62, October.
    11. Mark Christensen, 2007. "What We Might Know (But Aren't Sure) About Public-Sector Accrual Accounting," Australian Accounting Review, CPA Australia, vol. 17(41), pages 51-65, March.
    12. Wong, Patricia J.Y., 2015. "Eigenvalues of a general class of boundary value problem with derivative-dependent nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 908-930.
    13. Norma M Rantisi & Deborah Leslie, 2021. "In and against the neoliberal state? The precarious siting of work integration social enterprises (WISEs) as counter-movement in Montreal, Quebec," Environment and Planning A, , vol. 53(2), pages 349-370, March.
    14. Brunekreeft, Gert, 2004. "Market-based investment in electricity transmission networks: controllable flow," Utilities Policy, Elsevier, vol. 12(4), pages 269-281, December.
    15. Dias, Luis C. & Lamboray, Claude, 2010. "Extensions of the prudence principle to exploit a valued outranking relation," European Journal of Operational Research, Elsevier, vol. 201(3), pages 828-837, March.
    16. Oloruntoba, Richard, 2010. "An analysis of the Cyclone Larry emergency relief chain: Some key success factors," International Journal of Production Economics, Elsevier, vol. 126(1), pages 85-101, July.
    17. Chein-Shan Liu & Zhuojia Fu & Chung-Lun Kuo, 2017. "Directional Method of Fundamental Solutions for Three-dimensional Laplace Equation," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 9(6), pages 112-123, December.
    18. Schulze, Eberhard & Tillack, Peter & Patlassov, Oleg, 2002. "Einflussfaktoren Auf Gewinn Und Rentabilität Landwirtschaftlicher Großbetriebe Gebiet Omsk, Russland," IAMO Discussion Papers 14919, Institute of Agricultural Development in Transition Economies (IAMO).
    19. Yao Wu & David Levinson, 2005. "The Rational Locator Reexamined," Working Papers 200503, University of Minnesota: Nexus Research Group.
    20. Kameng Nip & Zhenbo Wang & Zizhuo Wang, 2021. "Assortment Optimization under a Single Transition Choice Model," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2122-2142, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:74:y:2015:i:c:p:875-883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.