IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v252y2022ics0360544222008659.html
   My bibliography  Save this article

Enhanced looping biomass/vapour gasification utilizing waste heat from molten copper slags

Author

Listed:
  • Huang, Jintao
  • Lyu, Sha
  • Han, He
  • Wang, Yanjiang
  • Sun, Haoyang
  • Su, Jingtao
  • Liu, Yidong
  • Min, Yonggang
  • Sun, Dazhi

Abstract

The syngas generation from biomass/vapour pyrolysis wih molten copper slag is an innovative technology in chemical industry. Copper slag and rice straws are representative undervalued trashes as metallurgical and agricultural by-products. But the inappropriate handling of them, including direct burying or open burning, could severely aggregate environmental pollution. This present study investigated the biomass pyrolysis integrating waste heat from molten copper slags through carbon-loops extension. The mechanism of integrated looping gasification was identified, where the effects of the mass ratio of FeO/SiO2, minor elements contents of (Al2O3+CaO), operational temperature and pressure on target syngas yields were systematically explored through thermodynamic calculation and experimental results. Thermodynamics calculations confirmed that increased mass ratio of FeO/SiO2 (higher than 1.5) and minor elements contents showed obvious catalytic effect on syngas generations, promoted, accompanied with obvious reduction of air pollutants emission. Since FeO favoured solid biomass conversion into syngas, exergy efficiency of generated syngas increased as the mass ratio of FeO/SiO2 was enhanced. Non-isothermal experiments confirmed the incorporation of FS1-5 and FS5-1 obviously undermined the polluting gas yields, which were in overall agreement with thermodynamics results. Meanwhile, the solid ash waste could serve as raw materials for soil nutrients, and the generated syngas could be utilized for electricity generation, based on which an integrated and sustainable looping system would be proposed. Therefore, the favourable results could thus provide significant insights for deepened understanding of biomass gasification as well as the efficient utilization of rice straw and copper slag.

Suggested Citation

  • Huang, Jintao & Lyu, Sha & Han, He & Wang, Yanjiang & Sun, Haoyang & Su, Jingtao & Liu, Yidong & Min, Yonggang & Sun, Dazhi, 2022. "Enhanced looping biomass/vapour gasification utilizing waste heat from molten copper slags," Energy, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222008659
    DOI: 10.1016/j.energy.2022.123962
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222008659
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123962?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Yongqi & Chen, Jingjing & Zhang, Zuotai, 2019. "Biomass gasification using the waste heat from high temperature slags in a mixture of CO2 and H2O," Energy, Elsevier, vol. 167(C), pages 688-697.
    2. Agrawal, Archana & Sahu, K.K., 2010. "Problems, prospects and current trends of copper recycling in India: An overview," Resources, Conservation & Recycling, Elsevier, vol. 54(7), pages 401-416.
    3. Crompton, Paul & Wu, Yanrui, 2005. "Energy consumption in China: past trends and future directions," Energy Economics, Elsevier, vol. 27(1), pages 195-208, January.
    4. Sun, Yongqi & Seetharaman, Seshadri & Liu, Qianyi & Zhang, Zuotai & Liu, Lili & Wang, Xidong, 2016. "Integrated biomass gasification using the waste heat from hot slags: Control of syngas and polluting gas releases," Energy, Elsevier, vol. 114(C), pages 165-176.
    5. Yongqi Sun & Zuotai Zhang & Lili Liu & Xidong Wang, 2015. "Heat Recovery from High Temperature Slags: A Review of Chemical Methods," Energies, MDPI, vol. 8(3), pages 1-19, March.
    6. Liang Meng & Ahmed Alengebawy & Ping Ai & Keda Jin & Mengdi Chen & Yulong Pan, 2020. "Techno-Economic Assessment of Three Modes of Large-Scale Crop Residue Utilization Projects in China," Energies, MDPI, vol. 13(14), pages 1-19, July.
    7. Zhang, Hui & Wang, Hong & Zhu, Xun & Qiu, Yong-Jun & Li, Kai & Chen, Rong & Liao, Qiang, 2013. "A review of waste heat recovery technologies towards molten slag in steel industry," Applied Energy, Elsevier, vol. 112(C), pages 956-966.
    8. Sun, Yongqi & Seetharaman, Seshadri & Zhang, Zuotai, 2018. "Integrating biomass pyrolysis with waste heat recovery from hot slags via extending the C-loops: Product yields and roles of slags," Energy, Elsevier, vol. 149(C), pages 792-803.
    9. Liu, H. & Jiang, G.M. & Zhuang, H.Y. & Wang, K.J., 2008. "Distribution, utilization structure and potential of biomass resources in rural China: With special references of crop residues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1402-1418, June.
    10. Zeng, Xianyang & Ma, Yitai & Ma, Lirong, 2007. "Utilization of straw in biomass energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 976-987, June.
    11. Yanli, Yang & Peidong, Zhang & Wenlong, Zhang & Yongsheng, Tian & Yonghong, Zheng & Lisheng, Wang, 2010. "Quantitative appraisal and potential analysis for primary biomass resources for energy utilization in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3050-3058, December.
    12. Sinton, Jonathan E. & Levine, Mark D., 1994. "Changing energy intensity in Chinese industry : The relatively importance of structural shift and intensity change," Energy Policy, Elsevier, vol. 22(3), pages 239-255, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Rufei & Meng, Kangzheng & Long, Hongming & Xu, ChunbaoCharles, 2024. "Biomass metallurgy: A sustainable and green path to a carbon-neutral metallurgical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Kun & Liu, Ronghou & Sun, Chen, 2016. "A review of methane production from agricultural residues in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 857-865.
    2. Zhang, Huining & Dong, Jianping & Wei, Chao & Cao, Caifang & Zhang, Zuotai, 2022. "Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction," Energy, Elsevier, vol. 239(PE).
    3. Sun, Yongqi & Seetharaman, Seshadri & Zhang, Zuotai, 2018. "Integrating biomass pyrolysis with waste heat recovery from hot slags via extending the C-loops: Product yields and roles of slags," Energy, Elsevier, vol. 149(C), pages 792-803.
    4. Wang, Xiaoyu & Yang, Lu & Steinberger, Yosef & Liu, Zuxin & Liao, Shuhua & Xie, Guanghui, 2013. "Field crop residue estimate and availability for biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 864-875.
    5. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    6. Hong, Junjie & Shi, Fangyuan & Zheng, Yuhan, 2023. "Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    7. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    8. Chen, Xiaoguang, 2016. "Economic potential of biomass supply from crop residues in China," Applied Energy, Elsevier, vol. 166(C), pages 141-149.
    9. Wu, Junjun & Tan, Yu & Li, Peng & Wang, Hong & Zhu, Xun & Liao, Qiang, 2022. "Centrifugal-Granulation-Assisted thermal energy recovery towards low-carbon blast furnace slag treatment: State of the art and future challenges," Applied Energy, Elsevier, vol. 325(C).
    10. Awasthi, Mukesh Kumar & Sindhu, Raveendran & Sirohi, Ranjna & Kumar, Vinod & Ahluwalia, Vivek & Binod, Parameswaran & Juneja, Ankita & Kumar, Deepak & Yan, Binghua & Sarsaiya, Surendra & Zhang, Zengqi, 2022. "Agricultural waste biorefinery development towards circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Ma, Hengyun & Oxley, Les & Gibson, John, 2010. "China's energy economy: A survey of the literature," Economic Systems, Elsevier, vol. 34(2), pages 105-132, June.
    12. Ma, Hengyun & Oxley, Les & Gibson, John & Li, Wen, 2010. "A survey of China's renewable energy economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 438-445, January.
    13. Zhang, Bo & Chen, G.Q., 2014. "Methane emissions in China 2007," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 886-902.
    14. Liu, Jin & Wu, Jianguo & Liu, Fengqiao & Han, Xingguo, 2012. "Quantitative assessment of bioenergy from crop stalk resources in Inner Mongolia, China," Applied Energy, Elsevier, vol. 93(C), pages 305-318.
    15. Zhang, Kai & Chang, Jian & Guan, Yanjun & Chen, Honggang & Yang, Yongping & Jiang, Jianchun, 2013. "Lignocellulosic biomass gasification technology in China," Renewable Energy, Elsevier, vol. 49(C), pages 175-184.
    16. Zheng, Y.H. & Li, Z.F. & Feng, S.F. & Lucas, M. & Wu, G.L. & Li, Y. & Li, C.H. & Jiang, G.M., 2010. "Biomass energy utilization in rural areas may contribute to alleviating energy crisis and global warming: A case study in a typical agro-village of Shandong, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3132-3139, December.
    17. Hengyun Ma & Les Oxley & John Gibson, 2009. "China’s Energy Situation and Its Implications in the New Millennium," Working Papers in Economics 09/01, University of Canterbury, Department of Economics and Finance.
    18. Sun, Yongqi & Seetharaman, Seshadri & Liu, Qianyi & Zhang, Zuotai & Liu, Lili & Wang, Xidong, 2016. "Integrated biomass gasification using the waste heat from hot slags: Control of syngas and polluting gas releases," Energy, Elsevier, vol. 114(C), pages 165-176.
    19. Duan, Wenjun & Yu, Qingbo & Wang, Zhimei & Liu, Junxiang & Qin, Qin, 2018. "Life cycle and economic assessment of multi-stage blast furnace slag waste heat recovery system," Energy, Elsevier, vol. 142(C), pages 486-495.
    20. Wang, Qiang & Li, Rongrong, 2016. "Drivers for energy consumption: A comparative analysis of China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 954-962.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222008659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.