IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v140y2019icp32-38.html
   My bibliography  Save this article

Promoting hydrogen-rich syngas production through catalytic cracking of rape straw using Ni-Fe/PAC-γAl2O3 catalyst

Author

Listed:
  • Shi, Xunwang
  • Zhang, Kaidi
  • Cheng, Qunpeng
  • Song, Guangsen
  • Fan, Guozhi
  • Li, Jianfen

Abstract

A catalyst loaded Ni-Fe using powder active carbon (PAC) and γ-Al2O3 as the support was prepared for hydrogen-rich syngas production from rape straw pyrolysis in a two-stage fixed reactor. EDX (Energy-dispersive X-ray spectroscopy), SEM (Scanning electron microscope) and N2 isothermal adsorption-desorption were used to characterize the catalysts. The results showed that the support of PAC-γAl2O3 was uniform with large specific surface area. The metals loaded on the support were well dispersed. The performance of Ni-Fe/PAC-γAl2O3 catalysts compared with single support catalyst NiO-Fe2O3/γAl2O3 (NFA) and NiO-Fe2O3/PAC (NFP) was studied. The results showed that the Ni-Fe/PAC-γAl2O3 catalysts showed a good catalytic activity which obviously enhanced the H2 gas yield to 54.23 g/kg Rape straw and reduced the tar yield to 4.06 g/kg. Meanwhile, Ni-Fe/PAC-γAl2O3 catalysts had a stronger ability to prevent the deactivation to keep a longtime stability than the single carrier catalyst.

Suggested Citation

  • Shi, Xunwang & Zhang, Kaidi & Cheng, Qunpeng & Song, Guangsen & Fan, Guozhi & Li, Jianfen, 2019. "Promoting hydrogen-rich syngas production through catalytic cracking of rape straw using Ni-Fe/PAC-γAl2O3 catalyst," Renewable Energy, Elsevier, vol. 140(C), pages 32-38.
  • Handle: RePEc:eee:renene:v:140:y:2019:i:c:p:32-38
    DOI: 10.1016/j.renene.2019.03.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119303659
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.03.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fagbemi, L & Khezami, L & Capart, R, 2001. "Pyrolysis products from different biomasses: application to the thermal cracking of tar," Applied Energy, Elsevier, vol. 69(4), pages 293-306, August.
    2. Živković, Luka A. & Pohar, Andrej & Likozar, Blaž & Nikačević, Nikola M., 2016. "Kinetics and reactor modeling for CaO sorption-enhanced high-temperature water–gas shift (SE–WGS) reaction for hydrogen production," Applied Energy, Elsevier, vol. 178(C), pages 844-855.
    3. Emami Taba, Leila & Irfan, Muhammad Faisal & Wan Daud, Wan Ashri Mohd & Chakrabarti, Mohammed Harun, 2012. "The effect of temperature on various parameters in coal, biomass and CO-gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5584-5596.
    4. Font Palma, Carolina, 2013. "Modelling of tar formation and evolution for biomass gasification: A review," Applied Energy, Elsevier, vol. 111(C), pages 129-141.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongbo Du, & Deng, Fang & Kommalapati, Raghava R. & Amarasekara, Ananda S., 2020. "Iron based catalysts in biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Pei, Haipeng & Jin, Baosheng & Huang, Yaji, 2020. "Quantitative analysis of mass and energy flow in rice straw gasification based on mass and carbon balance," Renewable Energy, Elsevier, vol. 161(C), pages 846-857.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hervy, Maxime & Weiss-Hortala, Elsa & Pham Minh, Doan & Dib, Hadi & Villot, Audrey & Gérente, Claire & Berhanu, Sarah & Chesnaud, Anthony & Thorel, Alain & Le Coq, Laurence & Nzihou, Ange, 2019. "Reactivity and deactivation mechanisms of pyrolysis chars from bio-waste during catalytic cracking of tar," Applied Energy, Elsevier, vol. 237(C), pages 487-499.
    2. Shen, Yafei & Zhao, Peitao & Shao, Qinfu & Takahashi, Fumitake & Yoshikawa, Kunio, 2015. "In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier," Applied Energy, Elsevier, vol. 160(C), pages 808-819.
    3. Shen, Yafei & Wang, Junfeng & Ge, Xinlei & Chen, Mindong, 2016. "By-products recycling for syngas cleanup in biomass pyrolysis – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1246-1268.
    4. Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
    5. Mushtaq, Faisal & Mat, Ramli & Ani, Farid Nasir, 2014. "A review on microwave assisted pyrolysis of coal and biomass for fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 555-574.
    6. Zhang, Ziyin & Pang, Shusheng & Levi, Tana, 2017. "Influence of AAEM species in coal and biomass on steam co-gasification of chars of blended coal and biomass," Renewable Energy, Elsevier, vol. 101(C), pages 356-363.
    7. Neves, Daniel & Thunman, Henrik & Tarelho, Luís & Larsson, Anton & Seemann, Martin & Matos, Arlindo, 2014. "Method for online measurement of the CHON composition of raw gas from biomass gasifier," Applied Energy, Elsevier, vol. 113(C), pages 932-945.
    8. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    9. Mehrpooya, Mehdi & Sharifzadeh, Mohammad Mehdi Moftakhari, 2017. "Conceptual and basic design of a novel integrated cogeneration power plant energy system," Energy, Elsevier, vol. 127(C), pages 516-533.
    10. Kuo, Po-Chih & Illathukandy, Biju & Wu, Wei & Chang, Jo-Shu, 2021. "Energy, exergy, and environmental analyses of renewable hydrogen production through plasma gasification of microalgal biomass," Energy, Elsevier, vol. 223(C).
    11. Po-Chih Kuo & Wei Wu, 2014. "Design, Optimization and Energetic Efficiency of Producing Hydrogen-Rich Gas from Biomass Steam Gasification," Energies, MDPI, vol. 8(1), pages 1-17, December.
    12. Erić, Aleksandar & Cvetinović, Dejan & Milutinović, Nada & Škobalj, Predrag & Bakić, Vukman, 2022. "Combined parametric modelling of biomass devolatilisation process," Renewable Energy, Elsevier, vol. 193(C), pages 13-22.
    13. Ngo, Son Ich & Nguyen, Thanh D.B. & Lim, Young-Il & Song, Byung-Ho & Lee, Uen-Do & Choi, Young-Tai & Song, Jae-Hun, 2011. "Performance evaluation for dual circulating fluidized-bed steam gasifier of biomass using quasi-equilibrium three-stage gasification model," Applied Energy, Elsevier, vol. 88(12), pages 5208-5220.
    14. Monteiro, Eliseu & Ismail, Tamer M. & Ramos, Ana & Abd El-Salam, M. & Brito, Paulo & Rouboa, Abel, 2018. "Experimental and modeling studies of Portuguese peach stone gasification on an autothermal bubbling fluidized bed pilot plant," Energy, Elsevier, vol. 142(C), pages 862-877.
    15. Michela Costa & Maurizio La Villetta & Daniele Piazzullo & Domenico Cirillo, 2021. "A Phenomenological Model of a Downdraft Biomass Gasifier Flexible to the Feedstock Composition and the Reactor Design," Energies, MDPI, vol. 14(14), pages 1-29, July.
    16. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    17. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    18. Buentello-Montoya, David & Zhang, Xiaolei & Li, Jun & Ranade, Vivek & Marques, Simão & Geron, Marco, 2020. "Performance of biochar as a catalyst for tar steam reforming: Effect of the porous structure," Applied Energy, Elsevier, vol. 259(C).
    19. Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
    20. Nargess Puadian & Jingge Li & Shusheng Pang, 2014. "Analysis of Operation Parameters in a Dual Fluidized Bed Biomass Gasifier Integrated with a Biomass Rotary Dryer: Development and Application of a System Model," Energies, MDPI, vol. 7(7), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:140:y:2019:i:c:p:32-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.