IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v133y2019icp512-519.html
   My bibliography  Save this article

Synthesis and application of Co doped ZnO as heterogeneous nanocatalyst for biodiesel production from non-edible oil

Author

Listed:
  • Borah, Manash Jyoti
  • Devi, Anuchaya
  • Borah, Raju
  • Deka, Dhanapati

Abstract

Exploration of non-edible oil as a feedstock and the use of new heterogeneous nanocatalyst could contribute to bioenergy research. In this regard, the present work is focussed on the use of cobalt doped zinc oxide nanocatalyst for production of biodiesel from Mesua ferrea oil. The synthesized catalyst has been analyzed through X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), and Thermogravimetric analysis (TGA) techniques. Under optimal reaction condition, maximum biodiesel conversion of 98.03% was obtained in 3 h at 60 °C with 2.5 wt% catalyst loading and 1:9 oil to methanol molar ratio. The produced biodiesel has been characterized using Proton Nuclear Magnetic Resonance (1H NMR), Carbon Nuclear Magnetic Resonance (13C NMR) and Gas Chromatography-Mass Spectroscopy (GC-MS) techniques. Fuel properties of the produced biodiesel have also been determined. The result showed good catalytic activity of cobalt doped Zinc oxide nanocatalyst and could be used for large scale biodiesel production from Mesua ferrea oil by further enhancing its stability.

Suggested Citation

  • Borah, Manash Jyoti & Devi, Anuchaya & Borah, Raju & Deka, Dhanapati, 2019. "Synthesis and application of Co doped ZnO as heterogeneous nanocatalyst for biodiesel production from non-edible oil," Renewable Energy, Elsevier, vol. 133(C), pages 512-519.
  • Handle: RePEc:eee:renene:v:133:y:2019:i:c:p:512-519
    DOI: 10.1016/j.renene.2018.10.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118312539
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.10.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Noiroj, Krisada & Intarapong, Pisitpong & Luengnaruemitchai, Apanee & Jai-In, Samai, 2009. "A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil," Renewable Energy, Elsevier, vol. 34(4), pages 1145-1150.
    2. Baskar, G. & Soumiya, S., 2016. "Production of biodiesel from castor oil using iron (II) doped zinc oxide nanocatalyst," Renewable Energy, Elsevier, vol. 98(C), pages 101-107.
    3. Shu, Qing & Gao, Jixian & Nawaz, Zeeshan & Liao, Yuhui & Wang, Dezheng & Wang, Jinfu, 2010. "Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst," Applied Energy, Elsevier, vol. 87(8), pages 2589-2596, August.
    4. Farooq, Muhammad & Ramli, Anita & Naeem, Abdul, 2015. "Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones," Renewable Energy, Elsevier, vol. 76(C), pages 362-368.
    5. Su, Feng & Peng, Cheng & Li, Guan-Lin & Xu, Li & Yan, Yun-Jun, 2016. "Biodiesel production from woody oil catalyzed by Candida rugosa lipase in ionic liquid," Renewable Energy, Elsevier, vol. 90(C), pages 329-335.
    6. da Conceição, Leyvison Rafael V. & Carneiro, Livia M. & Giordani, Domingos S. & de Castro, Heizir F., 2017. "Synthesis of biodiesel from macaw palm oil using mesoporous solid catalyst comprising 12-molybdophosphoric acid and niobia," Renewable Energy, Elsevier, vol. 113(C), pages 119-128.
    7. Feyzi, Mostafa & Norouzi, Leila, 2016. "Preparation and kinetic study of magnetic Ca/Fe3O4@SiO2 nanocatalysts for biodiesel production," Renewable Energy, Elsevier, vol. 94(C), pages 579-586.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali, Hamdy Elsayed Ahmed & El-fayoumy, Eman A. & Soliman, Ramadan M. & Elkhatat, Ahmed & Al-Meer, Saeed & Elsaid, Khaled & Hussein, Hanaa Ali & Zul Helmi Rozaini, Mohd & Azmuddin Abdullah, Mohd, 2024. "Nanoparticle applications in Algal-biorefinery for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Maleki, Basir & Kalanakoppal Venkatesh, Yatish & Esmaeili, Hossein & Haddadi, Masoumeh & Mithun Prakash, Ravikumar & Balakrishna, Geetha R., 2024. "Novel Co3O4 decorated with rGO nanocatalyst to boost microwave-assisted biodiesel production and as nano-additive to enhance the performance-emission characteristics of diesel engine," Energy, Elsevier, vol. 289(C).
    3. Maria Ameen & Mushtaq Ahmad & Muhammad Zafar & Mamoona Munir & Muhammad Mujtaba Mujtaba & Shazia Sultana & Rozina . & Samah Elsayed El-Khatib & Manzoore Elahi M. Soudagar & M. A. Kalam, 2022. "Prospects of Catalysis for Process Sustainability of Eco-Green Biodiesel Synthesis via Transesterification: A State-Of-The-Art Review," Sustainability, MDPI, vol. 14(12), pages 1-38, June.
    4. Foroutan, Rauf & Mohammadi, Reza & Razeghi, Jafar & Ramavandi, Bahman, 2021. "Biodiesel production from edible oils using algal biochar/CaO/K2CO3 as a heterogeneous and recyclable catalyst," Renewable Energy, Elsevier, vol. 168(C), pages 1207-1216.
    5. Aghel, Babak & Biabani, Arash, 2024. "Using solar microreactors and photocatalysts to synthesize biodiesel," Renewable Energy, Elsevier, vol. 220(C).
    6. Kazemi Shariat Panahi, Hamed & Hosseinzadeh-Bandbafha, Homa & Dehhaghi, Mona & Orooji, Yasin & Mahian, Omid & Shahbeik, Hossein & Kiehbadroudinezhad, Mohammadali & Kalam, Md Abul & Karimi-Maleh, Hassa, 2024. "Nanotechnology applications in biodiesel processing and production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Abdelmigeed, Mai O. & Al-Sakkari, Eslam G. & Hefney, Mahmoud S. & Ismail, Fatma M. & Ahmed, Tamer S. & Ismail, Ibrahim M., 2021. "Biodiesel production catalyzed by NaOH/Magnetized ZIF-8: Yield improvement using methanolysis and catalyst reusability enhancement," Renewable Energy, Elsevier, vol. 174(C), pages 253-261.
    8. Aisien, Felix Aibuedefe & Aisien, Eki Tina, 2023. "Modeling and optimization of transesterification of rubber seed oil using sulfonated CaO derived from giant African land snail (Achatina fulica) catalyst by response surface methodology," Renewable Energy, Elsevier, vol. 207(C), pages 137-146.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chouhan, A.P. Singh & Sarma, A.K., 2011. "Modern heterogeneous catalysts for biodiesel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4378-4399.
    2. Kazemi Shariat Panahi, Hamed & Hosseinzadeh-Bandbafha, Homa & Dehhaghi, Mona & Orooji, Yasin & Mahian, Omid & Shahbeik, Hossein & Kiehbadroudinezhad, Mohammadali & Kalam, Md Abul & Karimi-Maleh, Hassa, 2024. "Nanotechnology applications in biodiesel processing and production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    3. Abdullah, Sharifah Hanis Yasmin Sayid & Hanapi, Nur Hanis Mohamad & Azid, Azman & Umar, Roslan & Juahir, Hafizan & Khatoon, Helena & Endut, Azizah, 2017. "A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1040-1051.
    4. Yatish, K.V. & Lalithamba, H.S. & Suresh, R. & Latha, H.K.E., 2020. "Ochrocarpus longifolius assisted green synthesis of CaTiO3 nanoparticle for biodiesel production and its kinetic study," Renewable Energy, Elsevier, vol. 147(P1), pages 310-321.
    5. Saba, Tony & Estephane, Jane & El Khoury, Bilal & El Khoury, Maroulla & Khazma, Mahmoud & El Zakhem, Henri & Aouad, Samer, 2016. "Biodiesel production from refined sunflower vegetable oil over KOH/ZSM5 catalysts," Renewable Energy, Elsevier, vol. 90(C), pages 301-306.
    6. Suryajaya, Stefanus Kevin & Mulyono, Yohanes Ricky & Santoso, Shella Permatasari & Yuliana, Maria & Kurniawan, Alfin & Ayucitra, Aning & Sun, Yueting & Hartono, Sandy Budi & Soetaredjo, Felycia Edi & , 2021. "Iron (II) impregnated double-shelled hollow mesoporous silica as acid-base bifunctional catalyst for the conversion of low-quality oil to methyl esters," Renewable Energy, Elsevier, vol. 169(C), pages 1166-1174.
    7. Yatish, K.V. & Prakash, R. Mithun & Ningaraju, C. & Sakar, M. & GeethaBalakrishna, R. & Lalithamba, H.S., 2021. "Terminalia chebula as a novel green source for the synthesis of copper oxide nanoparticles and as feedstock for biodiesel production and its application on diesel engine," Energy, Elsevier, vol. 215(PB).
    8. El yaakouby, Ichraq & Rhrissi, Ilyass & Abouliatim, Youness & Hlaibi, Miloudi & Kamil, Noureddine, 2023. "Moroccan sardine scales as a novel and renewable source of heterogeneous catalyst for biodiesel production using palm fatty acid distillate," Renewable Energy, Elsevier, vol. 217(C).
    9. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    10. Daimary, Niran & Boruah, Pankaj & Eldiehy, Khalifa S.H. & Pegu, Tapan & Bardhan, Pritam & Bora, Utpal & Mandal, Manabendra & Deka, Dhanapati, 2022. "Musa acuminata peel: A bioresource for bio-oil and by-product utilization as a sustainable source of renewable green catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 187(C), pages 450-462.
    11. Subramonia Pillai, N. & Kannan, P. Seeni & Vettivel, S.C. & Suresh, S., 2017. "Optimization of transesterification of biodiesel using green catalyst derived from Albizia Lebbeck Pods by mixture design," Renewable Energy, Elsevier, vol. 104(C), pages 185-196.
    12. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    13. Nahas, Lea & Dahdah, Eliane & Aouad, Samer & El Khoury, Bilal & Gennequin, Cedric & Abi Aad, Edmond & Estephane, Jane, 2023. "Highly efficient scallop seashell-derived catalyst for biodiesel production from sunflower and waste cooking oils: Reaction kinetics and effect of calcination temperature studies," Renewable Energy, Elsevier, vol. 202(C), pages 1086-1095.
    14. Gualberto Zavarize, Danilo & Braun, Heder & Diniz de Oliveira, Jorge, 2021. "Methanolysis of low-FFA waste cooking oil with novel carbon-based heterogeneous acid catalyst derived from Amazon açaí berry seeds," Renewable Energy, Elsevier, vol. 171(C), pages 621-634.
    15. Fernanda Pereira Martins & Fabio Avila Rodrigues & Marcio Jose Silva, 2018. "Fe 2 (SO 4 ) 3 -Catalyzed Levulinic Acid Esterification: Production of Fuel Bioadditives," Energies, MDPI, vol. 11(5), pages 1-11, May.
    16. Jaiyen, Siyada & Naree, Thikumporn & Ngamcharussrivichai, Chawalit, 2015. "Comparative study of natural dolomitic rock and waste mixed seashells as heterogeneous catalysts for the methanolysis of palm oil to biodiesel," Renewable Energy, Elsevier, vol. 74(C), pages 433-440.
    17. Harsha Hebbar, H.R. & Math, M.C. & Yatish, K.V., 2018. "Optimization and kinetic study of CaO nano-particles catalyzed biodiesel production from Bombax ceiba oil," Energy, Elsevier, vol. 143(C), pages 25-34.
    18. Yu, Hewei & Cao, Yunlong & Li, Heyao & Zhao, Gaiju & Zhang, Xingyu & Cheng, Shen & Wei, Wei, 2021. "An efficient heterogeneous acid catalyst derived from waste ginger straw for biodiesel production," Renewable Energy, Elsevier, vol. 176(C), pages 533-542.
    19. Sooraj Kumar & Suhail Ahmed Soomro & Khanji Harijan & Mohammad Aslam Uqaili & Laveet Kumar, 2023. "Advancements of Biochar-Based Catalyst for Improved Production of Biodiesel: A Comprehensive Review," Energies, MDPI, vol. 16(2), pages 1-20, January.
    20. Al-Jammal, Noor & Al-Hamamre, Zayed & Alnaief, Mohammad, 2016. "Manufacturing of zeolite based catalyst from zeolite tuft for biodiesel production from waste sunflower oil," Renewable Energy, Elsevier, vol. 93(C), pages 449-459.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:133:y:2019:i:c:p:512-519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.