IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v133y2019icp261-267.html
   My bibliography  Save this article

Euonymus maackii Rupr. Seed oil as a new potential non-edible feedstock for biodiesel

Author

Listed:
  • Liu, Ju-Zhao
  • Cui, Qi
  • Kang, Yu-Fei
  • Meng, Yao
  • Gao, Ming-Zhu
  • Efferth, Thomas
  • Fu, Yu-Jie

Abstract

In this study, Euonymus maackii Seed oil (EMSO) was exploited and evaluated for the first time as a new non-edible oil feedstock for preparation of biodiesel. The EMSO yield was 41.06 ± 2.68 wt%. The fatty acid compositions of EMSO involved palmitoleic acid (2.01%), palmitic acid (14.5%), stearic acid (3.1%), oleic acid (49.8%), linoleic acid (29.3%), 11-Eicosenoic acid (0.1%) and arachidic acid (0.07%). Microwave-assisted transesterification with methanol provided a high conversion yield in short duration under low temperature. The 2.0 wt% of catalyst amount, 10:1 of methanol/oil molar ratio, 40 min of reaction time and 60 °C of temperature were found to be the optimum process conditions for the maximum biodiesel yield of 94.74 ± 2.09%. Using pseudo first-order kinetic model, the reaction rate constants were 2.145 × 102, 3.550 × 102 and 6.447 × 102 min−1 for 40, 50 and 60 °C, respectively. The thermodynamic property for biodiesel preparation was determined as activation energy = 47.67 kJ/mol. The fuel properties of the biodiesel product were evaluated and comparable to ASTM D-6751 and EN 14214 standards. Overall, this study revealed and confirmed the potential of Euonymus maackii seed oil as the appropriate alternative feedstock for biodiesel production.

Suggested Citation

  • Liu, Ju-Zhao & Cui, Qi & Kang, Yu-Fei & Meng, Yao & Gao, Ming-Zhu & Efferth, Thomas & Fu, Yu-Jie, 2019. "Euonymus maackii Rupr. Seed oil as a new potential non-edible feedstock for biodiesel," Renewable Energy, Elsevier, vol. 133(C), pages 261-267.
  • Handle: RePEc:eee:renene:v:133:y:2019:i:c:p:261-267
    DOI: 10.1016/j.renene.2018.10.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118312199
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.10.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Capellán-Pérez, Iñigo & Mediavilla, Margarita & de Castro, Carlos & Carpintero, Óscar & Miguel, Luis Javier, 2014. "Fossil fuel depletion and socio-economic scenarios: An integrated approach," Energy, Elsevier, vol. 77(C), pages 641-666.
    2. Malhotra, Rashi & Ali, Amjad, 2018. "Lithium-doped ceria supported SBA−15 as mesoporous solid reusable and heterogeneous catalyst for biodiesel production via simultaneous esterification and transesterification of waste cottonseed oil," Renewable Energy, Elsevier, vol. 119(C), pages 32-44.
    3. Roschat, Wuttichai & Siritanon, Theeranun & Yoosuk, Boonyawan & Sudyoadsuk, Taweesak & Promarak, Vinich, 2017. "Rubber seed oil as potential non-edible feedstock for biodiesel production using heterogeneous catalyst in Thailand," Renewable Energy, Elsevier, vol. 101(C), pages 937-944.
    4. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    5. Ding, Hui & Ye, Wei & Wang, Yongqiang & Wang, Xianqin & Li, Lujun & Liu, Dan & Gui, Jianzhou & Song, Chunfeng & Ji, Na, 2018. "Process intensification of transesterification for biodiesel production from palm oil: Microwave irradiation on transesterification reaction catalyzed by acidic imidazolium ionic liquids," Energy, Elsevier, vol. 144(C), pages 957-967.
    6. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    7. Li, Tian-Feng & Wang, Xi-Qing & Jiao, Jiao & Liu, Ju-Zhao & Zhang, Hua-Xia & Niu, Li-Li & Zhao, Chun-Jian & Gu, Cheng-Bo & Efferth, Thomas & Fu, Yu-Jie, 2018. "Catalytic transesterification of Pistacia chinensis seed oil using HPW immobilized on magnetic composite graphene oxide/cellulose microspheres," Renewable Energy, Elsevier, vol. 127(C), pages 1017-1025.
    8. Shameer, P. Mohamed & Ramesh, K., 2018. "Assessment on the consequences of injection timing and injection pressure on combustion characteristics of sustainable biodiesel fuelled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 45-61.
    9. Ullah, Zahoor & Bustam, M. Azmi & Man, Zakaria & Khan, Amir Sada & Muhammad, Nawshad & Sarwono, Ariyanti, 2017. "Preparation and kinetics study of biodiesel production from waste cooking oil using new functionalized ionic liquids as catalysts," Renewable Energy, Elsevier, vol. 114(PB), pages 755-765.
    10. Li, Ji & Peng, Xiao & Luo, Meng & Zhao, Chun-Jian & Gu, Cheng-Bo & Zu, Yuan-Gang & Fu, Yu-Jie, 2014. "Biodiesel production from Camptotheca acuminata seed oil catalyzed by novel Brönsted–Lewis acidic ionic liquid," Applied Energy, Elsevier, vol. 115(C), pages 438-444.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prakash Kumar Sarangi & Akhilesh Kumar Singh & Rajesh Kumar Srivastava & Vijai Kumar Gupta, 2023. "Recent Progress and Future Perspectives for Zero Agriculture Waste Technologies: Pineapple Waste as a Case Study," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    2. Silitonga, A.S. & Shamsuddin, A.H. & Mahlia, T.M.I. & Milano, Jassinne & Kusumo, F. & Siswantoro, Joko & Dharma, S. & Sebayang, A.H. & Masjuki, H.H. & Ong, Hwai Chyuan, 2020. "Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization," Renewable Energy, Elsevier, vol. 146(C), pages 1278-1291.
    3. Sannagoudar Basanagoudar, Arun & Maleki, Basir & Prakash Ravikumar, Mithun & Mounesh, & Kuppe, Pramoda & Kalanakoppal Venkatesh, Yatish, 2024. "Exploitation of Annona reticulata leaf extract for the synthesis of CeO2 nanoparticles as catalyst for the production of biodiesel using seed oil thereof," Energy, Elsevier, vol. 298(C).
    4. Pascoal, C.V.P. & Oliveira, A.L.L. & Figueiredo, D.D. & Assunção, J.C.C., 2020. "Optimization and kinetic study of ultrasonic-mediated in situ transesterification for biodiesel production from the almonds of Syagrus cearensis," Renewable Energy, Elsevier, vol. 147(P1), pages 1815-1824.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang-Chun Tang & Yanjun Xia & Qi Xue & Jie Liu, 2018. "A Non-Probabilistic Solution for Uncertainty and Sensitivity Analysis on Techno-Economic Assessments of Biodiesel Production with Interval Uncertainties," Energies, MDPI, vol. 11(3), pages 1-17, March.
    2. Panchal, Balaji & Bian, Kai & Chang, Tao & Zhu, Zheng & Wang, Jinxi & Qin, Shenjun & Zhao, Cunliang & Sun, Yuzhuang, 2021. "Synthesis of Generation-2 polyamidoamine based ionic liquid: Efficient dendrimer based catalytic green fuel production from yellow grease," Energy, Elsevier, vol. 219(C).
    3. Veronica Winoto & Nuttawan Yoswathana, 2019. "Optimization of Biodiesel Production Using Nanomagnetic CaO-Based Catalysts with Subcritical Methanol Transesterification of Rubber Seed Oil," Energies, MDPI, vol. 12(2), pages 1-13, January.
    4. Cai, Dongren & Zhan, Guowu & Xiao, Jingran & Zhou, Shu-Feng & Qiu, Ting, 2021. "Design and synthesis of novel amphipathic ionic liquids for biodiesel production from soapberry oil," Renewable Energy, Elsevier, vol. 168(C), pages 779-790.
    5. Liu, Ying & Yan, Hanzhao & Liu, Jia & Dong, Wanglai & Cao, Zhi & Hu, Xingbang & Zhou, Zheng, 2020. "Acidic deep eutectic solvents with long carbon chains as catalysts and reaction media for biodiesel production," Renewable Energy, Elsevier, vol. 162(C), pages 1842-1853.
    6. Xuan Yang & Rongrong Li, 2018. "Investigating Low-Carbon City: Empirical Study of Shanghai," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    7. Wang, Yongqiang & Zhao, Dan & Chen, Guanyi & Liu, Shejiang & Ji, Na & Ding, Hui & Fu, Jianfeng, 2019. "Preparation of phosphotungstic acid based poly(ionic liquid) and its application to esterification of palmitic acid," Renewable Energy, Elsevier, vol. 133(C), pages 317-324.
    8. Ameen, Mariam & Azizan, Mohammad Tazli & Yusup, Suzana & Ramli, Anita & Shahbaz, Muhammad & Aqsha, Aqsha, 2020. "Process optimization of green diesel selectivity and understanding of reaction intermediates," Renewable Energy, Elsevier, vol. 149(C), pages 1092-1106.
    9. Chen, Ying-Chen & Lin, Dai-Ying & Chen, Bing-Hung, 2019. "Metasilicate-based catalyst prepared from natural diatomaceous earth for biodiesel production," Renewable Energy, Elsevier, vol. 138(C), pages 1042-1050.
    10. Rafael Estevez & Laura Aguado-Deblas & Alejandro Posadillo & Beatriz Hurtado & Felipa M. Bautista & José M. Hidalgo & Carlos Luna & Juan Calero & Antonio A. Romero & Diego Luna, 2019. "Performance and Emission Quality Assessment in a Diesel Engine of Straight Castor and Sunflower Vegetable Oils, in Diesel/Gasoline/Oil Triple Blends," Energies, MDPI, vol. 12(11), pages 1-13, June.
    11. Li, Mantian & Chen, Jinyi & Huang, Youjie & Li, Meichen & Lin, Xiaocheng & Qiu, Ting, 2020. "Reusable and efficient heterogeneous catalysts for biodiesel production from free fatty acids and oils: Self-solidifying hybrid ionic liquids," Energy, Elsevier, vol. 211(C).
    12. Mitridati, Lesia & Kazempour, Jalal & Pinson, Pierre, 2020. "Heat and electricity market coordination: A scalable complementarity approach," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1107-1123.
    13. de Jesus, Sérgio S. & Filho, Rubens Maciel, 2020. "Recent advances in lipid extraction using green solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. Shayegh, Soheil & Sanchez, Daniel L., 2021. "Impact of market design on cost-effectiveness of renewable portfolio standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    15. Panchal, Balaji & Zhu, Zheng & Qin, Shenjun & Chang, Tao & Zhao, Qiaojing & Sun, Yuzhuang & Zhao, Cunliang & Wang, Jinxi & Bian, Kai & Rankhamb, Santosh, 2022. "The current state applications of ethyl carbonate with ionic liquid in sustainable biodiesel production: A review," Renewable Energy, Elsevier, vol. 181(C), pages 341-354.
    16. Gao, Yibo & Mao, Yanpeng & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong & Chen, Guifang & Chen, Shouyan, 2020. "Efficient generation of hydrogen by two-step thermochemical cycles: Successive thermal reduction and water splitting reactions using equal-power microwave irradiation and a high entropy material," Applied Energy, Elsevier, vol. 279(C).
    17. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    18. Villanthenkodath, Muhammed Ashiq & Mahalik, Mantu Kumar, 2021. "Does economic growth respond to electricity consumption asymmetrically in Bangladesh? The implication for environmental sustainability," Energy, Elsevier, vol. 233(C).
    19. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    20. Schlör, Holger & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "The FEW-Nexus city index – Measuring urban resilience," Applied Energy, Elsevier, vol. 210(C), pages 382-392.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:133:y:2019:i:c:p:261-267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.