IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v142y2019icp497-510.html
   My bibliography  Save this article

Design, modelling, energy and exergy analysis of a parabolic cooker

Author

Listed:
  • Onokwai, Anthony O.
  • Okonkwo, Ugochukwu C.
  • Osueke, Christian O.
  • Okafor, Christian E.
  • Olayanju, Tajudeen M.A.
  • Dahunsi, Samuel, O.

Abstract

A functional parabolic solar cooker was designed and constructed to serve as an alternate renewable source of energy for cooking and to also reduce the adverse effects of other sources of energy on the environment. The solar cooker was fabricated using cheap, locally sourced available materials in Nigeria. Experimental investigation was carried out on the produced model in Omu-Aran Metropolis, Kwara State, Nigeria in December 2016. Thereafter other investigations were carried out from January to December 2017 and lastly in January 2018 between the hours of 10:00 a.m. to 5:00 p.m. local time for both stagnation and sensible heating, using 2 L of water at every experiment. The average energy and exergy efficiencies of the parabolic cooker were about 39% and 44% respectively. The instability of the energy efficiency occurred as a result of optical and thermal losses from the reflector and pot, as well as the varying environmental conditions. Mathematical expressions were used to calculate the theoretical values of energy and exergy efficiencies using Minitab, while the statistical analysis showed that there was no significant difference between the experimental and predicted results for exergy and energy efficiencies of both cookers at p > 0.05, this validated the design.

Suggested Citation

  • Onokwai, Anthony O. & Okonkwo, Ugochukwu C. & Osueke, Christian O. & Okafor, Christian E. & Olayanju, Tajudeen M.A. & Dahunsi, Samuel, O., 2019. "Design, modelling, energy and exergy analysis of a parabolic cooker," Renewable Energy, Elsevier, vol. 142(C), pages 497-510.
  • Handle: RePEc:eee:renene:v:142:y:2019:i:c:p:497-510
    DOI: 10.1016/j.renene.2019.04.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119305117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.04.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Naveen & Vishwanath, G. & Gupta, Anurag, 2011. "An exergy based test protocol for truncated pyramid type solar box cooker," Energy, Elsevier, vol. 36(9), pages 5710-5715.
    2. Palavras, I. & Bakos, G.C., 2006. "Development of a low-cost dish solar concentrator and its application in zeolite desorption," Renewable Energy, Elsevier, vol. 31(15), pages 2422-2431.
    3. Al-Soud, Mohammed S. & Abdallah, Essam & Akayleh, Ali & Abdallah, Salah & Hrayshat, Eyad S., 2010. "A parabolic solar cooker with automatic two axes sun tracking system," Applied Energy, Elsevier, vol. 87(2), pages 463-470, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Nimr, Moh’d A. & Al-Ammari, Wahib A., 2020. "A novel hybrid and interactive solar system consists of Stirling engine ̸vacuum evaporator ̸thermoelectric cooler for electricity generation and water distillation," Renewable Energy, Elsevier, vol. 153(C), pages 1053-1066.
    2. Ozoegwu, Chigbogu G. & Akpan, Patrick U., 2021. "A review and appraisal of Nigeria's solar energy policy objectives and strategies against the backdrop of the renewable energy policy of the Economic Community of West African States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Vengadesan, Elumalai & Gurusamy, Pathinettampadian & Senthil, Ramalingam, 2023. "Thermal performance analysis of flat surface solar receiver with square tubular fins for a parabolic dish collector," Renewable Energy, Elsevier, vol. 216(C).
    4. Madhankumar, S. & Viswanathan, Karthickeyan & Wu, Wei, 2021. "Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material," Renewable Energy, Elsevier, vol. 176(C), pages 280-294.
    5. Muthu Kumaran Gunasegaran & Md Hasanuzzaman & ChiaKwang Tan & Ab Halim Abu Bakar & Vignes Ponniah, 2023. "Energy Consumption, Energy Analysis, and Solar Energy Integration for Commercial Building Restaurants," Energies, MDPI, vol. 16(20), pages 1-26, October.
    6. Kashyap, S. Rahul & Pramanik, Santanu & Ravikrishna, R.V., 2023. "A review of solar, electric and hybrid cookstoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    2. Mahavar, S. & Sengar, N. & Dashora, P., 2017. "Analytical model for electric back-up power estimation of solar box type cookers," Energy, Elsevier, vol. 134(C), pages 871-881.
    3. Ashmore Mawire & Sibongiseni M. Simelane & Patrick O. Abedigamba, 2021. "Energetic and exergetic performance comparison of three solar cookers for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14528-14555, October.
    4. Ranjan Chaudhary & Avadhesh Yadav, 2021. "Experimental investigation of solar cooking system based on evacuated tube solar collector for the preparation of concentrated sugarcane juice used in jaggery making," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 647-663, January.
    5. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    6. Wang, Ruilin & Qu, Wanjun & Hong, Hui & Sun, Jie & Jin, Hongguang, 2018. "Experimental performance of 300 kWth prototype of parabolic trough collector with rotatable axis and irreversibility analysis," Energy, Elsevier, vol. 161(C), pages 595-609.
    7. Islam, Kazi & Riggs, Brian & Ji, Yaping & Robertson, John & Spitler, Christopher & Romanin, Vince & Codd, Daniel & Escarra, Matthew D., 2019. "Transmissive microfluidic active cooling for concentrator photovoltaics," Applied Energy, Elsevier, vol. 236(C), pages 906-915.
    8. Alphonsus, Ephrem Ryan & Abdullah, Mohammad Omar, 2016. "A review on the applications of programmable logic controllers (PLCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1185-1205.
    9. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Prasanna, U.R. & Umanand, L., 2011. "Modeling and design of a solar thermal system for hybrid cooking application," Applied Energy, Elsevier, vol. 88(5), pages 1740-1755, May.
    11. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    12. Zamani, Hosein & Moghiman, Mohammad & Kianifar, Ali, 2015. "Optimization of the parabolic mirror position in a solar cooker using the response surface method (RSM)," Renewable Energy, Elsevier, vol. 81(C), pages 753-759.
    13. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional and community solar cooking in India using SK-23 and Scheffler solar cookers: A financial appraisal," Renewable Energy, Elsevier, vol. 120(C), pages 501-511.
    14. Kashyap, S. Rahul & Pramanik, Santanu & Ravikrishna, R.V., 2023. "A review of solar, electric and hybrid cookstoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    15. Seme, Sebastijan & Srpčič, Gregor & Kavšek, Domen & Božičnik, Stane & Letnik, Tomislav & Praunseis, Zdravko & Štumberger, Bojan & Hadžiselimović, Miralem, 2017. "Dual-axis photovoltaic tracking system – Design and experimental investigation," Energy, Elsevier, vol. 139(C), pages 1267-1274.
    16. Natarajan, M. & Srinivas, T., 2017. "Experimental and simulation studies on a novel gravity based passive tracking system for a linear solar concentrating collector," Renewable Energy, Elsevier, vol. 105(C), pages 312-323.
    17. Park, S.R. & Pandey, A.K. & Tyagi, V.V. & Tyagi, S.K., 2014. "Energy and exergy analysis of typical renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 105-123.
    18. Tawfik, M.A. & Sagade, Atul A. & El-Sebaii, A.A. & Khallaf, A.M. & El-Shal, Hanan M. & Abd Allah, W.E., 2024. "Enabling sustainability in the decentralized energy sector through a solar cooker augmented with a bottom parabolic reflector: Performance modelling and 4E analyses," Energy, Elsevier, vol. 287(C).
    19. Prasanna, U.R. & Umanand, L., 2011. "Optimization and design of energy transport system for solar cooking application," Applied Energy, Elsevier, vol. 88(1), pages 242-251, January.
    20. Ahmad, Salsabila & Shafie, Suhaidi & Ab Kadir, Mohd Zainal Abidin & Ahmad, Noor Syafawati, 2013. "On the effectiveness of time and date-based sun positioning solar collector in tropical climate: A case study in Northern Peninsular Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 635-642.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:142:y:2019:i:c:p:497-510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.