IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i1d10.1007_s10668-020-00601-8.html
   My bibliography  Save this article

Experimental investigation of solar cooking system based on evacuated tube solar collector for the preparation of concentrated sugarcane juice used in jaggery making

Author

Listed:
  • Ranjan Chaudhary

    (National Institute of Technology, Kurukshetra)

  • Avadhesh Yadav

    (National Institute of Technology, Kurukshetra)

Abstract

An experimental investigation of a solar cooking system has been performed for the preparation of concentrated sugarcane juice required in jaggery making. An evacuated tube solar collector has been used as a heat collecting medium. Experiments have been performed on sunny and clear sky days by taking the cooking loads of 1, 1.5 and 2 L of sugarcane juice. To predict the thermal performance of solar cooking system, an exergy-based approach is employed. The obtained results have been compared with the other solar cooking systems considering performance factors like peak exergy power and product of the peak exergy power value with the temperature difference gap. The maximum value of peak exergy power and the product of temperature difference gap with peak exergy output value is observed maximum for the 2 L of cooking load. A percentage increase of 76% and 59% in the value of peak exergy for the presented system is observed with reference to the peak exergy power for the box-type and parabolic trough-type solar cooker design, respectively. Furthermore, 53.3% rise in the time taken is observed for the cooking load of 2 L with respect to 1 L of cooking load. The results from the present study emphasized that evacuated tube-based solar cooking system has the potential to maintain the temperature of sugarcane juice above its boiling point temperature even in low solar intensity hours.

Suggested Citation

  • Ranjan Chaudhary & Avadhesh Yadav, 2021. "Experimental investigation of solar cooking system based on evacuated tube solar collector for the preparation of concentrated sugarcane juice used in jaggery making," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 647-663, January.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:1:d:10.1007_s10668-020-00601-8
    DOI: 10.1007/s10668-020-00601-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00601-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00601-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arenas, José M., 2007. "Design, development and testing of a portable parabolic solar kitchen," Renewable Energy, Elsevier, vol. 32(2), pages 257-266.
    2. Kumar, Naveen & Vishwanath, G. & Gupta, Anurag, 2011. "An exergy based test protocol for truncated pyramid type solar box cooker," Energy, Elsevier, vol. 36(9), pages 5710-5715.
    3. Sardeshpande, Vishal R. & Shendage, D.J. & Pillai, Indu R., 2010. "Thermal performance evaluation of a four pan jaggery processing furnace for improvement in energy utilization," Energy, Elsevier, vol. 35(12), pages 4740-4747.
    4. Al-Soud, Mohammed S. & Abdallah, Essam & Akayleh, Ali & Abdallah, Salah & Hrayshat, Eyad S., 2010. "A parabolic solar cooker with automatic two axes sun tracking system," Applied Energy, Elsevier, vol. 87(2), pages 463-470, February.
    5. Kumar, Naveen & Vishwanath, G. & Gupta, Anurag, 2012. "An exergy based unified test protocol for solar cookers of different geometries," Renewable Energy, Elsevier, vol. 44(C), pages 457-462.
    6. Abokersh, Mohamed Hany & El-Morsi, Mohamed & Sharaf, Osama & Abdelrahman, Wael, 2017. "An experimental evaluation of direct flow evacuated tube solar collector integrated with phase change material," Energy, Elsevier, vol. 139(C), pages 1111-1125.
    7. Haraksingh, I. & Mc Doom, I.A. & Headley, O.St.C., 1996. "A natural convection flat-plate collector solar cooker with short term storage," Renewable Energy, Elsevier, vol. 9(1), pages 729-732.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    2. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    3. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
    4. Ashmore Mawire & Sibongiseni M. Simelane & Patrick O. Abedigamba, 2021. "Energetic and exergetic performance comparison of three solar cookers for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14528-14555, October.
    5. Onokwai, Anthony O. & Okonkwo, Ugochukwu C. & Osueke, Christian O. & Okafor, Christian E. & Olayanju, Tajudeen M.A. & Dahunsi, Samuel, O., 2019. "Design, modelling, energy and exergy analysis of a parabolic cooker," Renewable Energy, Elsevier, vol. 142(C), pages 497-510.
    6. Park, S.R. & Pandey, A.K. & Tyagi, V.V. & Tyagi, S.K., 2014. "Energy and exergy analysis of typical renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 105-123.
    7. Koshti, Bhupendra & Dev, Rahul & Bharti, Ajaya & Narayan, Audhesh, 2023. "Comparative performance evaluation of modified solar cookers for subtropical climate conditions," Renewable Energy, Elsevier, vol. 209(C), pages 505-515.
    8. Mahavar, S. & Sengar, N. & Dashora, P., 2017. "Analytical model for electric back-up power estimation of solar box type cookers," Energy, Elsevier, vol. 134(C), pages 871-881.
    9. Hosseinzadeh, Mohammad & Sadeghirad, Reza & Zamani, Hosein & Kianifar, Ali & Mirzababaee, Seyyed Mahdi, 2021. "The performance improvement of an indirect solar cooker using multi-walled carbon nanotube-oil nanofluid: An experimental study with thermodynamic analysis," Renewable Energy, Elsevier, vol. 165(P1), pages 14-24.
    10. Wang, Ruilin & Qu, Wanjun & Hong, Hui & Sun, Jie & Jin, Hongguang, 2018. "Experimental performance of 300 kWth prototype of parabolic trough collector with rotatable axis and irreversibility analysis," Energy, Elsevier, vol. 161(C), pages 595-609.
    11. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    12. Skouri, Safa & Ben Haj Ali, Abdessalem & Bouadila, Salwa & Ben Salah, Mohieddine & Ben Nasrallah, Sassi, 2016. "Design and construction of sun tracking systems for solar parabolic concentrator displacement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1419-1429.
    13. Kumar, Rakesh & Kumar, Mahesh, 2018. "Upgradation of jaggery production and preservation technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 167-180.
    14. Alphonsus, Ephrem Ryan & Abdullah, Mohammad Omar, 2016. "A review on the applications of programmable logic controllers (PLCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1185-1205.
    15. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    16. Prasanna, U.R. & Umanand, L., 2011. "Modeling and design of a solar thermal system for hybrid cooking application," Applied Energy, Elsevier, vol. 88(5), pages 1740-1755, May.
    17. Benghanem, M., 2011. "Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia," Applied Energy, Elsevier, vol. 88(4), pages 1427-1433, April.
    18. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Beyne, W. & T'Jollyn, I. & Lecompte, S. & Cabeza, L.F. & De Paepe, M., 2023. "Standardised methods for the determination of key performance indicators for thermal energy storage heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    20. Zamani, Hosein & Moghiman, Mohammad & Kianifar, Ali, 2015. "Optimization of the parabolic mirror position in a solar cooker using the response surface method (RSM)," Renewable Energy, Elsevier, vol. 81(C), pages 753-759.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:1:d:10.1007_s10668-020-00601-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.