IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i10d10.1007_s10668-021-01255-w.html
   My bibliography  Save this article

Energetic and exergetic performance comparison of three solar cookers for developing countries

Author

Listed:
  • Ashmore Mawire

    (North West University (Mafikeng Campus))

  • Sibongiseni M. Simelane

    (North West University (Mafikeng Campus))

  • Patrick O. Abedigamba

    (North West University (Mafikeng Campus))

Abstract

Three different domestic solar cookers are compared experimentally during water heating experiments using different loads. The solar cookers experimentally tested using energy and exergy thermal performance parameters are: a solar box cooker without a reflector, a solar box cooker with a reflector and a parabolic dish solar cooker. The rate of heat losses is more detrimental to the performance of the parabolic solar cooker since the cooking vessel is exposed more to the ambient weather conditions. Heat losses seem to have little effect on the performance of the solar box cookers. The solar box cooker with the reflector shows the highest average energy efficiencies, which increase with the water heating load. The parabolic solar cooker shows the lowest average energy efficiencies with the lower loads, which increase to be higher than those of the solar box cooker without the reflector at the higher loads. The solar box cooker with the reflector shows the highest average energy and exergy efficiency values, which are not dependent on the water load. The parabolic dish solar cooker shows average exergy efficiencies, which increase with the water heating load. The greatest cooking potential in terms of the speed of cooking is shown by parabolic dish solar cooker. The best overall thermal performance is shown with the solar box cooker with a reflector, but its cooking speed is rather slow when compared to the parabolic dish solar cooker. The solar box cooker without the reflector shows the worst thermal performance in most of the tested parameters except for the heat losses where it shows the lowest heat loss factors for all the experimental tests.

Suggested Citation

  • Ashmore Mawire & Sibongiseni M. Simelane & Patrick O. Abedigamba, 2021. "Energetic and exergetic performance comparison of three solar cookers for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14528-14555, October.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:10:d:10.1007_s10668-021-01255-w
    DOI: 10.1007/s10668-021-01255-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01255-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01255-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahavar, S. & Rajawat, P. & Punia, R.C. & Sengar, N. & Dashora, P., 2015. "Evaluating the optimum load range for box-type solar cookers," Renewable Energy, Elsevier, vol. 74(C), pages 187-194.
    2. Al-Soud, Mohammed S. & Abdallah, Essam & Akayleh, Ali & Abdallah, Salah & Hrayshat, Eyad S., 2010. "A parabolic solar cooker with automatic two axes sun tracking system," Applied Energy, Elsevier, vol. 87(2), pages 463-470, February.
    3. Kumar, Naveen & Vishwanath, G. & Gupta, Anurag, 2012. "An exergy based unified test protocol for solar cookers of different geometries," Renewable Energy, Elsevier, vol. 44(C), pages 457-462.
    4. Farooqui, Suhail Zaki, 2014. "A review of vacuum tube based solar cookers with the experimental determination of energy and exergy efficiencies of a single vacuum tube based prototype," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 439-445.
    5. Sonune, A.V & Philip, S.K, 2003. "Development of a domestic concentrating cooker," Renewable Energy, Elsevier, vol. 28(8), pages 1225-1234.
    6. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    7. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    8. Kumar, Naveen & Chavda, Tilak & Mistry, H.N., 2010. "A truncated pyramid non-tracking type multipurpose domestic solar cooker/hot water system," Applied Energy, Elsevier, vol. 87(2), pages 471-477, February.
    9. Kumar, Naveen & Vishwanath, G. & Gupta, Anurag, 2011. "An exergy based test protocol for truncated pyramid type solar box cooker," Energy, Elsevier, vol. 36(9), pages 5710-5715.
    10. Erdem Cuce & Pinar Mert Cuce, 2015. "Theoretical investigation of hot box solar cookers having conventional and finned absorber plates," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 10(3), pages 238-245.
    11. Harmim, A. & Merzouk, M. & Boukar, M. & Amar, M., 2012. "Performance study of a box-type solar cooker employing an asymmetric compound parabolic concentrator," Energy, Elsevier, vol. 47(1), pages 471-480.
    12. Harmim, A. & Belhamel, M. & Boukar, M. & Amar, M., 2010. "Experimental investigation of a box-type solar cooker with a finned absorber plate," Energy, Elsevier, vol. 35(9), pages 3799-3802.
    13. Fluri, Thomas P., 2009. "The potential of concentrating solar power in South Africa," Energy Policy, Elsevier, vol. 37(12), pages 5075-5080, December.
    14. Kumar, Naveen & Agravat, Sagar & Chavda, Tilak & Mistry, H.N., 2008. "Design and development of efficient multipurpose domestic solar cookers/dryers," Renewable Energy, Elsevier, vol. 33(10), pages 2207-2211.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oyirwoth P. Abedigamba & Sayuni F. Mndeme & Ashmore Mawire & Musa Rukaaya, 2023. "Heat Utilization Characteristics of Two Sensible Heat Storage Vegetable Oils for Domestic Applications," Sustainability, MDPI, vol. 15(8), pages 1-11, April.
    2. B C Anilkumar & Ranjith Maniyeri & S Anish, 2023. "Thermal performance assessment of a cylindrical box solar cooker fitted with decahedron outer reflector," Energy & Environment, , vol. 34(3), pages 493-516, May.
    3. Popkova, Elena G. & Bogoviz, Aleksei V. & Lobova, Svetlana V. & DeLo, Piper & Alekseev, Alexander N. & Sergi, Bruno S., 2023. "Environmentally sustainable policies in the petroleum sector through the lens of industry 4.0. Russians Lukoil and Gazprom: The COVID-19 crisis of 2020 vs sanctions crisis of 2022," Resources Policy, Elsevier, vol. 84(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    2. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Kashyap, S. Rahul & Pramanik, Santanu & Ravikrishna, R.V., 2023. "A review of solar, electric and hybrid cookstoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    5. Mahavar, S. & Sengar, N. & Dashora, P., 2017. "Analytical model for electric back-up power estimation of solar box type cookers," Energy, Elsevier, vol. 134(C), pages 871-881.
    6. Herez, Amal & Ramadan, Mohamad & Khaled, Mahmoud, 2018. "Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 421-432.
    7. Koshti, Bhupendra & Dev, Rahul & Bharti, Ajaya & Narayan, Audhesh, 2023. "Comparative performance evaluation of modified solar cookers for subtropical climate conditions," Renewable Energy, Elsevier, vol. 209(C), pages 505-515.
    8. Zamani, Hosein & Moghiman, Mohammad & Kianifar, Ali, 2015. "Optimization of the parabolic mirror position in a solar cooker using the response surface method (RSM)," Renewable Energy, Elsevier, vol. 81(C), pages 753-759.
    9. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
    10. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2012. "State of the art of solar cooking: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3776-3785.
    11. Palanikumar, G. & Shanmugan, S. & Chithambaram, V. & Gorjian, Shiva & Pruncu, Catalin I. & Essa, F.A. & Kabeel, A.E. & Panchal, Hitesh & Janarthanan, B. & Ebadi, Hossein & Elsheikh, Ammar H. & Selvara, 2021. "Thermal investigation of a solar box-type cooker with nanocomposite phase change materials using flexible thermography," Renewable Energy, Elsevier, vol. 178(C), pages 260-282.
    12. Saini, Prashant & Pandey, Sushant & Goswami, Shruti & Dhar, Atul & Mohamed, M.E. & Powar, Satvasheel, 2023. "Experimental and numerical investigation of a hybrid solar thermal-electric powered cooking oven," Energy, Elsevier, vol. 280(C).
    13. Vengadesan, Elumalai & Senthil, Ramalingam, 2021. "Experimental investigation of the thermal performance of a box type solar cooker using a finned cooking vessel," Renewable Energy, Elsevier, vol. 171(C), pages 431-446.
    14. Saxena, Abhishek & Varun & Pandey, S.P. & Srivastav, G., 2011. "A thermodynamic review on solar box type cookers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3301-3318, August.
    15. Ranjan Chaudhary & Avadhesh Yadav, 2021. "Experimental investigation of solar cooking system based on evacuated tube solar collector for the preparation of concentrated sugarcane juice used in jaggery making," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 647-663, January.
    16. Park, S.R. & Pandey, A.K. & Tyagi, V.V. & Tyagi, S.K., 2014. "Energy and exergy analysis of typical renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 105-123.
    17. Al-Nehari, Hamoud A. & Mohammed, Mahmoud A. & Odhah, Abdulkarem A. & Al-attab, K.A. & Mohammed, Bakeel K. & Al-Habari, Abdulwahab M. & Al-Fahd, Nasr H., 2021. "Experimental and numerical analysis of tiltable box-type solar cooker with tracking mechanism," Renewable Energy, Elsevier, vol. 180(C), pages 954-965.
    18. Apaolaza-Pagoaga, Xabier & Carrillo-Andrés, Antonio & Ruivo, Celestino Rodrigues, 2022. "Experimental characterization of the thermal performance of the Haines 2 solar cooker," Energy, Elsevier, vol. 257(C).
    19. Tawfik, M.A. & Sagade, Atul A. & El-Sebaii, A.A. & Khallaf, A.M. & El-Shal, Hanan M. & Abd Allah, W.E., 2024. "Enabling sustainability in the decentralized energy sector through a solar cooker augmented with a bottom parabolic reflector: Performance modelling and 4E analyses," Energy, Elsevier, vol. 287(C).
    20. Liyew, Kassa W. & Habtu, Nigus G. & Louvet, Yoann & Guta, Dawit D. & Jordan, Ulrike, 2021. "Technical design, costs, and greenhouse gas emissions of solar Injera baking stoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:10:d:10.1007_s10668-021-01255-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.