IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v176y2021icp280-294.html
   My bibliography  Save this article

Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material

Author

Listed:
  • Madhankumar, S.
  • Viswanathan, Karthickeyan
  • Wu, Wei

Abstract

Solar energy is a widely used green energy resource that is used for drying processes. Through this assessment, the performance of an Indirect Solar Dryer (ISD) with three different cases, namely solar collector - without Thermal Energy Storage (TES), with TES unit having Phase Change Material (PCM) and with TES having fins inserted PCM have been experimentally analyzed during spring and summer seasons for drying Momordica charantia. Totally six experiments were undertaken to compare temperature, drying kinetics, and energy analyses. The initial moisture level of 2 kg of specimen decreased from 1.84 kg of water (92% w. b) to 0.24 kg of water (12% w. b) in 10.5 h utilizing ISD with TES having fins inserted PCM (Test 6). The maximum thermal efficiency achieved about 19.41% on Test 6. Exergy efficiency increased from 8.66% to 79.02% at Test 6. Environmental impacts assessment has revealed that the Energy Payback Time for the ISD was 1.42 years. The CO2 emission, mitigation, and carbon credit gained (Test 6) are 23.88 kg/year, 20.13 tons, and $100.642 to $402.569 for the 35 years’ intended lifespan. The assessment report showed that the device established was a potentially effective commercial drying technique, both in energy utilization and environmental sustainability.

Suggested Citation

  • Madhankumar, S. & Viswanathan, Karthickeyan & Wu, Wei, 2021. "Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material," Renewable Energy, Elsevier, vol. 176(C), pages 280-294.
  • Handle: RePEc:eee:renene:v:176:y:2021:i:c:p:280-294
    DOI: 10.1016/j.renene.2021.05.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121007679
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.05.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Enibe, S.O., 2003. "Thermal analysis of a natural circulation solar air heater with phase change material energy storage," Renewable Energy, Elsevier, vol. 28(14), pages 2269-2299.
    2. Dutta, Pooja & Dutta, Partha Pratim & Kalita, Paragmoni, 2021. "Thermal performance studies for drying of Garcinia pedunculata in a free convection corrugated type of solar dryer," Renewable Energy, Elsevier, vol. 163(C), pages 599-612.
    3. Onokwai, Anthony O. & Okonkwo, Ugochukwu C. & Osueke, Christian O. & Okafor, Christian E. & Olayanju, Tajudeen M.A. & Dahunsi, Samuel, O., 2019. "Design, modelling, energy and exergy analysis of a parabolic cooker," Renewable Energy, Elsevier, vol. 142(C), pages 497-510.
    4. Rani, Poonam & Tripathy, P.P., 2021. "Drying characteristics, energetic and exergetic investigation during mixed-mode solar drying of pineapple slices at varied air mass flow rates," Renewable Energy, Elsevier, vol. 167(C), pages 508-519.
    5. Vijayan, S. & Arjunan, T.V. & Kumar, Anil, 2020. "Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices," Renewable Energy, Elsevier, vol. 146(C), pages 2210-2223.
    6. Azaizia, Zaineb & Kooli, Sami & Hamdi, Ilhem & Elkhal, Wissem & Guizani, Amen Allah, 2020. "Experimental study of a new mixed mode solar greenhouse drying system with and without thermal energy storage for pepper," Renewable Energy, Elsevier, vol. 145(C), pages 1972-1984.
    7. Sharma, Atul & Chen, C.R. & Vu Lan, Nguyen, 2009. "Solar-energy drying systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1185-1210, August.
    8. Lakshmi, D.V.N. & Muthukumar, P. & Layek, Apurba & Nayak, Prakash Kumar, 2018. "Drying kinetics and quality analysis of black turmeric (Curcuma caesia) drying in a mixed mode forced convection solar dryer integrated with thermal energy storage," Renewable Energy, Elsevier, vol. 120(C), pages 23-34.
    9. Jain, Dilip & Tewari, Pratibha, 2015. "Performance of indirect through pass natural convective solar crop dryer with phase change thermal energy storage," Renewable Energy, Elsevier, vol. 80(C), pages 244-250.
    10. Khodadadi, J.M. & Fan, Liwu & Babaei, Hasan, 2013. "Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 418-444.
    11. Akbulut, Abdullah & Durmuş, Aydin, 2010. "Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer," Energy, Elsevier, vol. 35(4), pages 1754-1763.
    12. Nadir, Nadia & Bouguettaia, Hamza & Boughali, Slimane & Bechki, Djamel, 2019. "Use of a new agricultural product as thermal insulation for solar collector," Renewable Energy, Elsevier, vol. 134(C), pages 569-578.
    13. Ekka, Jasinta Poonam & Bala, Krishnendu & Muthukumar, P. & Kanaujiya, Dipak Kumar, 2020. "Performance analysis of a forced convection mixed mode horizontal solar cabinet dryer for drying of black ginger (Kaempferia parviflora) using two successive air mass flow rates," Renewable Energy, Elsevier, vol. 152(C), pages 55-66.
    14. Bal, Lalit M. & Satya, Santosh & Naik, S.N. & Meda, Venkatesh, 2011. "Review of solar dryers with latent heat storage systems for agricultural products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 876-880, January.
    15. Malakar, Santanu & Arora, Vinkel Kumar & Nema, Prabhat K., 2021. "Design and performance evaluation of an evacuated tube solar dryer for drying garlic clove," Renewable Energy, Elsevier, vol. 168(C), pages 568-580.
    16. Bal, Lalit M. & Satya, Santosh & Naik, S.N., 2010. "Solar dryer with thermal energy storage systems for drying agricultural food products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2298-2314, October.
    17. Vásquez, José & Reyes, Alejandro & Pailahueque, Nicolás, 2019. "Modeling, simulation and experimental validation of a solar dryer for agro-products with thermal energy storage system," Renewable Energy, Elsevier, vol. 139(C), pages 1375-1390.
    18. Atalay, Halil, 2019. "Performance analysis of a solar dryer integrated with the packed bed thermal energy storage (TES) system," Energy, Elsevier, vol. 172(C), pages 1037-1052.
    19. Arun, K.R. & Srinivas, M. & Saleel, C.A. & Jayaraj, S., 2020. "Influence of the location of discrete macro-encapsulated thermal energy storage on the performance of a double pass solar plate collector system," Renewable Energy, Elsevier, vol. 146(C), pages 675-686.
    20. Tiwari, Sumit & Tiwari, G.N., 2016. "Exergoeconomic analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer," Energy, Elsevier, vol. 114(C), pages 155-164.
    21. Atalay, Halil & Cankurtaran, Eda, 2021. "Energy, exergy, exergoeconomic and exergo-environmental analyses of a large scale solar dryer with PCM energy storage medium," Energy, Elsevier, vol. 216(C).
    22. Baniasadi, Ehsan & Ranjbar, Saeed & Boostanipour, Omid, 2017. "Experimental investigation of the performance of a mixed-mode solar dryer with thermal energy storage," Renewable Energy, Elsevier, vol. 112(C), pages 143-150.
    23. Aviara, Ndubisi A. & Onuoha, Lovelyn N. & Falola, Oluwakemi E. & Igbeka, Joseph C., 2014. "Energy and exergy analyses of native cassava starch drying in a tray dryer," Energy, Elsevier, vol. 73(C), pages 809-817.
    24. Karthikeyan, A.K. & Murugavelh, S., 2018. "Thin layer drying kinetics and exergy analysis of turmeric (Curcuma longa) in a mixed mode forced convection solar tunnel dryer," Renewable Energy, Elsevier, vol. 128(PA), pages 305-312.
    25. Das, Biplab & Mondol, Jayanta Deb & Debnath, Suman & Pugsley, Adrian & Smyth, Mervyn & Zacharopoulos, A., 2020. "Effect of the absorber surface roughness on the performance of a solar air collector: An experimental investigation," Renewable Energy, Elsevier, vol. 152(C), pages 567-578.
    26. Charvát, Pavel & Klimeš, Lubomír & Pech, Ondřej & Hejčík, Jiří, 2019. "Solar air collector with the solar absorber plate containing a PCM – Environmental chamber experiments and computer simulations," Renewable Energy, Elsevier, vol. 143(C), pages 731-740.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ndukwu, Macmanus Chinenye & Akpan, Godwin & Okeahialam, Azubuike N. & Umoh, John D. & Ubuoh, Emmanuel A. & Benjamine, Uchechukwu G. & Nwachukwu, Chris & Kalu, Confidence A. & Mbanasor, Jude & Wu, Hong, 2023. "A comparison of the drying kinetics, energy consumption and colour quality of drying medicinal leaves in direct-solar dryer with different colours of collector cover," Renewable Energy, Elsevier, vol. 216(C).
    2. Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2022. "Experimental investigation of a novel hybrid drying system powered by a solar photovoltaic/thermal air collector and wind turbine," Renewable Energy, Elsevier, vol. 194(C), pages 705-718.
    3. Hadibi, Tarik & Mennouche, Djamel & Boubekri, Abdelghani & Chouicha, Samira & Arıcı, Müslüm & Yunfeng, Wang & Ming, Li & Fang-ling, Fan, 2023. "Drying characteristic, sustainability, and 4E (energy, exergy, and enviro-economic) analysis of dried date fruits using indirect solar-electric dryer: An experimental investigation," Renewable Energy, Elsevier, vol. 218(C).
    4. Atalay, Halil & Aslan, Volkan, 2023. "Advanced exergoeconomic and exergy performance assessments of a wind and solar energy powered hybrid dryer," Renewable Energy, Elsevier, vol. 209(C), pages 218-230.
    5. Ceylin Şirin & Fatih Selimefendigil & Hakan Fehmi Öztop, 2023. "Performance Analysis and Identification of an Indirect Photovoltaic Thermal Dryer with Aluminum Oxide Nano-Embedded Thermal Energy Storage Modification," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    6. Dhileepan Sekar & Devi Ilangovan & Muhammad Ikhsan Taipabu & Karthickeyan Viswanathan & Wei Wu, 2023. "Influence of Ethanol Blended Diesel Enriched with Hydroxy Gas in Dual-Fuel Mode on Common Rail Direct Injection Engine," Energies, MDPI, vol. 16(17), pages 1-15, September.
    7. Atalay, Halil & Yavaş, Nur & Turhan Çoban, M., 2022. "Sustainability and performance analysis of a solar and wind energy assisted hybrid dryer," Renewable Energy, Elsevier, vol. 187(C), pages 1173-1183.
    8. Gupta, Ankur & Das, Biplab & Biswas, Agnimitra & Mondol, Jayanta Deb, 2022. "Sustainability and 4E analysis of novel solar photovoltaic-thermal solar dryer under forced and natural convection drying," Renewable Energy, Elsevier, vol. 188(C), pages 1008-1021.
    9. Atalay, Halil, 2022. "Exergoeconomic and environmental impact evaluation of wind energy assisted hybrid solar dryer and conventional solar dryer," Renewable Energy, Elsevier, vol. 200(C), pages 1416-1425.
    10. Mellalou, Abderrahman & Riad, Walid & Bacaoui, Abdelaziz & Outzourhit, Abdelkader, 2023. "Impact of the greenhouse drying modes of two-phase olive pomace on the energy, exergy, economic and environmental (4E) performance indicators," Renewable Energy, Elsevier, vol. 210(C), pages 229-250.
    11. Madhankumar, S. & Viswanathan, Karthickeyan, 2022. "Computational and experimental study of a novel corrugated-type absorber plate solar collector with thermal energy storage moisture removal device," Applied Energy, Elsevier, vol. 324(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Arun, K.R. & Kunal, G. & Srinivas, M. & Kumar, C.S. Sujith & Mohanraj, M. & Jayaraj, S., 2020. "Drying of untreated Musa nendra and Momordica charantia in a forced convection solar cabinet dryer with thermal storage," Energy, Elsevier, vol. 192(C).
    3. Mellalou, Abderrahman & Riad, Walid & Bacaoui, Abdelaziz & Outzourhit, Abdelkader, 2023. "Impact of the greenhouse drying modes of two-phase olive pomace on the energy, exergy, economic and environmental (4E) performance indicators," Renewable Energy, Elsevier, vol. 210(C), pages 229-250.
    4. Dake, Rock Aymar & N’Tsoukpoe, Kokouvi Edem & Kuznik, Frédéric & Lèye, Babacar & Ouédraogo, Igor W.K., 2021. "A review on the use of sorption materials in solar dryers," Renewable Energy, Elsevier, vol. 175(C), pages 965-979.
    5. Atalay, Halil, 2019. "Performance analysis of a solar dryer integrated with the packed bed thermal energy storage (TES) system," Energy, Elsevier, vol. 172(C), pages 1037-1052.
    6. Madhankumar, S. & Viswanathan, Karthickeyan, 2022. "Computational and experimental study of a novel corrugated-type absorber plate solar collector with thermal energy storage moisture removal device," Applied Energy, Elsevier, vol. 324(C).
    7. Atalay, Halil & Yavaş, Nur & Turhan Çoban, M., 2022. "Sustainability and performance analysis of a solar and wind energy assisted hybrid dryer," Renewable Energy, Elsevier, vol. 187(C), pages 1173-1183.
    8. Lingayat, Abhay Bhanudas & Chandramohan, V.P. & Raju, V.R.K. & Meda, Venkatesh, 2020. "A review on indirect type solar dryers for agricultural crops – Dryer setup, its performance, energy storage and important highlights," Applied Energy, Elsevier, vol. 258(C).
    9. Rani, Poonam & Tripathy, P.P., 2021. "Drying characteristics, energetic and exergetic investigation during mixed-mode solar drying of pineapple slices at varied air mass flow rates," Renewable Energy, Elsevier, vol. 167(C), pages 508-519.
    10. Gupta, Ankur & Das, Biplab & Biswas, Agnimitra & Mondol, Jayanta Deb, 2022. "Sustainability and 4E analysis of novel solar photovoltaic-thermal solar dryer under forced and natural convection drying," Renewable Energy, Elsevier, vol. 188(C), pages 1008-1021.
    11. Vijayan, S. & Arjunan, T.V. & Kumar, Anil, 2020. "Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices," Renewable Energy, Elsevier, vol. 146(C), pages 2210-2223.
    12. Asim Ahmad & Om Prakash & Anil Kumar & Rajeshwari Chatterjee & Shubham Sharma & Vineet Kumar & Kushagra Kulshreshtha & Changhe Li & Elsayed Mohamed Tag Eldin, 2022. "A Comprehensive State-of-the-Art Review on the Recent Developments in Greenhouse Drying," Energies, MDPI, vol. 15(24), pages 1-42, December.
    13. Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2024. "A comprehensive review of hybrid solar dryers integrated with auxiliary energy and units for agricultural products," Energy, Elsevier, vol. 293(C).
    14. Atalay, Halil, 2022. "Exergoeconomic and environmental impact evaluation of wind energy assisted hybrid solar dryer and conventional solar dryer," Renewable Energy, Elsevier, vol. 200(C), pages 1416-1425.
    15. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    16. Lakshmi, D.V.N. & Muthukumar, P. & Nayak, Prakash Kumar, 2021. "Experimental investigations on active solar dryers integrated with thermal storage for drying of black pepper," Renewable Energy, Elsevier, vol. 167(C), pages 728-739.
    17. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    18. Atalay, Halil & Cankurtaran, Eda, 2021. "Energy, exergy, exergoeconomic and exergo-environmental analyses of a large scale solar dryer with PCM energy storage medium," Energy, Elsevier, vol. 216(C).
    19. Saini, Raj Kumar & Saini, Devender Kumar & Gupta, Rajeev & Verma, Piush & Thakur, Robin & Kumar, Sushil & wassouf, Ali, 2023. "Technological development in solar dryers from 2016 to 2021-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    20. Hamed Karami & Mohammad Kaveh & Iman Golpour & Esmail Khalife & Robert Rusinek & Bohdan Dobrzański & Marek Gancarz, 2021. "Thermodynamic Evaluation of the Forced Convective Hybrid-Solar Dryer during Drying Process of Rosemary ( Rosmarinus officinalis L.) Leaves," Energies, MDPI, vol. 14(18), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:176:y:2021:i:c:p:280-294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.