IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v140y2019icp828-839.html
   My bibliography  Save this article

Repair of wind turbine blades: Review of methods and related computational mechanics problems

Author

Listed:
  • Mishnaevsky, Leon

Abstract

A short overview of main repair techniques for wind turbine blades and the related problems of computational mechanics is presented. Computational models of the leading edge erosion of wind turbine blades, injection repair and viscous flow, patch/scarf repair as well as curing and adhesive development are reviewed. Both the degradation of wind turbine blades during service (caused by surface erosion, surface cracking, delamination, fiber failure) and the repair procedures (coating, patch and scarf attachment, injection and curing of adhesives) represent the multiscale processes, controlled by geometrical., blade, patch, scarf geometries), mechanical (strength of composite, strength of adhesive, coating, stress distribution) and physical/chemical effects (curing, viscous flow, humidity, temperature and UV effects). For the further optimization of repair technology and efficiency, multi-physical, multiscale computational models should be employed.

Suggested Citation

  • Mishnaevsky, Leon, 2019. "Repair of wind turbine blades: Review of methods and related computational mechanics problems," Renewable Energy, Elsevier, vol. 140(C), pages 828-839.
  • Handle: RePEc:eee:renene:v:140:y:2019:i:c:p:828-839
    DOI: 10.1016/j.renene.2019.03.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119304252
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.03.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Slot, H.M. & Gelinck, E.R.M. & Rentrop, C. & van der Heide, E., 2015. "Leading edge erosion of coated wind turbine blades: Review of coating life models," Renewable Energy, Elsevier, vol. 80(C), pages 837-848.
    2. Fraisse, Anthony & Bech, Jakob Ilsted & Borum, Kaj Kvisgaard & Fedorov, Vladimir & Frost-Jensen Johansen, Nicolai & McGugan, Malcolm & Mishnaevsky, Leon & Kusano, Yukihiro, 2018. "Impact fatigue damage of coated glass fibre reinforced polymer laminate," Renewable Energy, Elsevier, vol. 126(C), pages 1102-1112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charlotte Bay Hasager & Flemming Vejen & Witold Robert Skrzypiński & Anna-Maria Tilg, 2021. "Rain Erosion Load and Its Effect on Leading-Edge Lifetime and Potential of Erosion-Safe Mode at Wind Turbines in the North Sea and Baltic Sea," Energies, MDPI, vol. 14(7), pages 1-24, April.
    2. Amrit Shankar Verma & Sandro Di Noi & Zhengru Ren & Zhiyu Jiang & Julie J. E. Teuwen, 2021. "Minimum Leading Edge Protection Application Length to Combat Rain-Induced Erosion of Wind Turbine Blades," Energies, MDPI, vol. 14(6), pages 1-26, March.
    3. Muhammad Abdullah Sheeraz & Muhammad Sohail Malik & Khalid Rehman & Hassan Elahi & Zubair Butt & Iftikhar Ahmad & Marco Eugeni & Paolo Gaudenzi, 2021. "Numerical Assessment and Parametric Optimization of a Piezoelectric Wind Energy Harvester for IoT-Based Applications," Energies, MDPI, vol. 14(9), pages 1-19, April.
    4. Mishnaevsky, Leon & Hasager, Charlotte Bay & Bak, Christian & Tilg, Anna-Maria & Bech, Jakob I. & Doagou Rad, Saeed & Fæster, Søren, 2021. "Leading edge erosion of wind turbine blades: Understanding, prevention and protection," Renewable Energy, Elsevier, vol. 169(C), pages 953-969.
    5. Antoine Chrétien & Antoine Tahan & Philippe Cambron & Adaiton Oliveira-Filho, 2023. "Operational Wind Turbine Blade Damage Evaluation Based on 10-min SCADA and 1 Hz Data," Energies, MDPI, vol. 16(7), pages 1-18, March.
    6. Leon Mishnaevsky & Nicolai Frost-Jensen Johansen & Anthony Fraisse & Søren Fæster & Thomas Jensen & Brian Bendixen, 2022. "Technologies of Wind Turbine Blade Repair: Practical Comparison," Energies, MDPI, vol. 15(5), pages 1-17, February.
    7. Mishnaevsky, Leon & Tempelis, Antonios & Kuthe, Nikesh & Mahajan, Puneet, 2023. "Recent developments in the protection of wind turbine blades against leading edge erosion: Materials solutions and predictive modelling," Renewable Energy, Elsevier, vol. 215(C).
    8. Xiaoxun, Zhu & Xinyu, Hang & Xiaoxia, Gao & Xing, Yang & Zixu, Xu & Yu, Wang & Huaxin, Liu, 2022. "Research on crack detection method of wind turbine blade based on a deep learning method," Applied Energy, Elsevier, vol. 328(C).
    9. Hasager, C. & Vejen, F. & Bech, J.I. & Skrzypiński, W.R. & Tilg, A.-M. & Nielsen, M., 2020. "Assessment of the rain and wind climate with focus on wind turbine blade leading edge erosion rate and expected lifetime in Danish Seas," Renewable Energy, Elsevier, vol. 149(C), pages 91-102.
    10. Yang, Cong & Liu, Xun & Zhou, Hua & Ke, Yan & See, John, 2023. "Towards accurate image stitching for drone-based wind turbine blade inspection," Renewable Energy, Elsevier, vol. 203(C), pages 267-279.
    11. Hui Li & Xiaolong Lu & Wen Xin & Zhihui Guo & Bo Zhou & Baokuan Ning & Hongbing Bao, 2023. "Repair Parameter Design of Outer Reinforcement Layers of Offshore Wind Turbine Blade Spar Cap Based on Structural and Aerodynamic Analysis," Energies, MDPI, vol. 16(2), pages 1-24, January.
    12. Fang, Jianhao & Hu, Weifei & Liu, Zhenyu & Chen, Weiyi & Tan, Jianrong & Jiang, Zhiyu & Verma, Amrit Shankar, 2022. "Wind turbine rotor speed design optimization considering rain erosion based on deep reinforcement learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function," Renewable Energy, Elsevier, vol. 181(C), pages 59-70.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mishnaevsky, Leon & Hasager, Charlotte Bay & Bak, Christian & Tilg, Anna-Maria & Bech, Jakob I. & Doagou Rad, Saeed & Fæster, Søren, 2021. "Leading edge erosion of wind turbine blades: Understanding, prevention and protection," Renewable Energy, Elsevier, vol. 169(C), pages 953-969.
    2. Verma, Amrit Shankar & Jiang, Zhiyu & Caboni, Marco & Verhoef, Hans & van der Mijle Meijer, Harald & Castro, Saullo G.P. & Teuwen, Julie J.E., 2021. "A probabilistic rainfall model to estimate the leading-edge lifetime of wind turbine blade coating system," Renewable Energy, Elsevier, vol. 178(C), pages 1435-1455.
    3. Jeanie A. Aird & Rebecca J. Barthelmie & Sara C. Pryor, 2023. "Automated Quantification of Wind Turbine Blade Leading Edge Erosion from Field Images," Energies, MDPI, vol. 16(6), pages 1-23, March.
    4. Hoksbergen, T.H. & Akkerman, R. & Baran, I., 2023. "Rain droplet impact stress analysis for leading edge protection coating systems for wind turbine blades," Renewable Energy, Elsevier, vol. 218(C).
    5. Hasager, C. & Vejen, F. & Bech, J.I. & Skrzypiński, W.R. & Tilg, A.-M. & Nielsen, M., 2020. "Assessment of the rain and wind climate with focus on wind turbine blade leading edge erosion rate and expected lifetime in Danish Seas," Renewable Energy, Elsevier, vol. 149(C), pages 91-102.
    6. Fang, Jianhao & Hu, Weifei & Liu, Zhenyu & Chen, Weiyi & Tan, Jianrong & Jiang, Zhiyu & Verma, Amrit Shankar, 2022. "Wind turbine rotor speed design optimization considering rain erosion based on deep reinforcement learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Liu, Wenyi, 2016. "Design and kinetic analysis of wind turbine blade-hub-tower coupled system," Renewable Energy, Elsevier, vol. 94(C), pages 547-557.
    8. Herring, Robbie & Dyer, Kirsten & Martin, Ffion & Ward, Carwyn, 2019. "The increasing importance of leading edge erosion and a review of existing protection solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    9. López, Javier Contreras & Kolios, Athanasios & Wang, Lin & Chiachio, Manuel, 2023. "A wind turbine blade leading edge rain erosion computational framework," Renewable Energy, Elsevier, vol. 203(C), pages 131-141.
    10. James W. K. Nash & Iasonas Zekos & Margaret M. Stack, 2021. "Mapping of Meteorological Observations over the Island of Ireland to Enhance the Understanding and Prediction of Rain Erosion in Wind Turbine Blades," Energies, MDPI, vol. 14(15), pages 1-34, July.
    11. Manisha Sawant & Sameer Thakare & A. Prabhakara Rao & Andrés E. Feijóo-Lorenzo & Neeraj Dhanraj Bokde, 2021. "A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics," Energies, MDPI, vol. 14(8), pages 1-30, April.
    12. Amrit Shankar Verma & Sandro Di Noi & Zhengru Ren & Zhiyu Jiang & Julie J. E. Teuwen, 2021. "Minimum Leading Edge Protection Application Length to Combat Rain-Induced Erosion of Wind Turbine Blades," Energies, MDPI, vol. 14(6), pages 1-26, March.
    13. Zhang, Shijie & Wei, Jing & Chen, Xi & Zhao, Yuhao, 2020. "China in global wind power development: Role, status and impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    14. Charlotte Bay Hasager & Flemming Vejen & Witold Robert Skrzypiński & Anna-Maria Tilg, 2021. "Rain Erosion Load and Its Effect on Leading-Edge Lifetime and Potential of Erosion-Safe Mode at Wind Turbines in the North Sea and Baltic Sea," Energies, MDPI, vol. 14(7), pages 1-24, April.
    15. Fraisse, Anthony & Bech, Jakob Ilsted & Borum, Kaj Kvisgaard & Fedorov, Vladimir & Frost-Jensen Johansen, Nicolai & McGugan, Malcolm & Mishnaevsky, Leon & Kusano, Yukihiro, 2018. "Impact fatigue damage of coated glass fibre reinforced polymer laminate," Renewable Energy, Elsevier, vol. 126(C), pages 1102-1112.
    16. Pugh, K. & Nash, J.W. & Reaburn, G. & Stack, M.M., 2021. "On analytical tools for assessing the raindrop erosion of wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. Bech, Jakob Ilsted & Johansen, Nicolai Frost-Jensen & Madsen, Martin Bonde & Hannesdóttir, Ásta & Hasager, Charlotte Bay, 2022. "Experimental study on the effect of drop size in rain erosion test and on lifetime prediction of wind turbine blades," Renewable Energy, Elsevier, vol. 197(C), pages 776-789.
    18. Xiaowen Song & Zhitai Xing & Yan Jia & Xiaojuan Song & Chang Cai & Yinan Zhang & Zekun Wang & Jicai Guo & Qingan Li, 2022. "Review on the Damage and Fault Diagnosis of Wind Turbine Blades in the Germination Stage," Energies, MDPI, vol. 15(20), pages 1-17, October.
    19. Dimitris Al. Katsaprakakis & Nikos Papadakis & Ioannis Ntintakis, 2021. "A Comprehensive Analysis of Wind Turbine Blade Damage," Energies, MDPI, vol. 14(18), pages 1-31, September.
    20. Castorrini, Alessio & Barnabei, Valerio F. & Domenech, Luis & Šakalyté, Asta & Sánchez, Fernando & Campobasso, M. Sergio, 2024. "Impact of meteorological data factors and material characterization method on the predictions of leading edge erosion of wind turbine blades," Renewable Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:140:y:2019:i:c:p:828-839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.