IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2498-d544468.html
   My bibliography  Save this article

Numerical Assessment and Parametric Optimization of a Piezoelectric Wind Energy Harvester for IoT-Based Applications

Author

Listed:
  • Muhammad Abdullah Sheeraz

    (Faculty of Mechanical Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23460, Pakistan)

  • Muhammad Sohail Malik

    (Faculty of Mechanical Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23460, Pakistan)

  • Khalid Rehman

    (Faculty of Mechanical Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23460, Pakistan)

  • Hassan Elahi

    (Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Zubair Butt

    (Department of Mechanical Engineering, University of Engineering and Technology Taxila 47080, Pakistan)

  • Iftikhar Ahmad

    (Department of Mechanical Engineering, School of Engineering Bahrain Polytechnic, Isa Town P.O. Box 33349, Bahrain)

  • Marco Eugeni

    (Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Paolo Gaudenzi

    (Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

Abstract

In the 21st century, researchers have been showing keen interest in the areas of wireless networking and internet of things (IoT) devices. Conventionally, batteries have been used to power these networks; however, due to the limited lifespan of batteries and with the recent advancements in piezoelectric technology, there is a dramatic increase in renewable energy harvesting devices. In this research, an eco-friendly wind energy harvesting device based on the piezoelectric technique is analytically modeled, numerically simulated, and statistically optimized for low power applications. MATLAB toolbox SIMSCAPE is utilized to simulate the proposed wind energy harvester in which a windmill is used to produce rotational motion due to the kinetic energy of wind. The windmill’s rotational shaft is further connected to the rotary to linear converter (RLC) and vibration enhancement mechanism (VEM) for the generation of translational mechanical vibration. Consequently, due to these alternative linear vibrations, the piezoelectric stack produces sufficient electrical output. The output response of the energy harvester is analyzed for the various conditions of piezoelectric thickness, wind speed, rotor angular velocity, and VEM stiffness. It is observed that the electrical power of the proposed harvester is proportional to the cube of wind speed and is inversely proportional to the number of rotor blades. Furthermore, an optimization strategy based on the full factorial design of the experiment is developed and implemented on MINITAB 18.0 for evaluating the statistical performance of the proposed harvester. It is noticed that a design with 3 rotor-blades, having 3 mm piezoelectric thickness, and 40 Nm −1 stiffness generates the optimum electrical response of the harvester.

Suggested Citation

  • Muhammad Abdullah Sheeraz & Muhammad Sohail Malik & Khalid Rehman & Hassan Elahi & Zubair Butt & Iftikhar Ahmad & Marco Eugeni & Paolo Gaudenzi, 2021. "Numerical Assessment and Parametric Optimization of a Piezoelectric Wind Energy Harvester for IoT-Based Applications," Energies, MDPI, vol. 14(9), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2498-:d:544468
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2498/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2498/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hassan Elahi & Marco Eugeni & Paolo Gaudenzi, 2018. "A Review on Mechanisms for Piezoelectric-Based Energy Harvesters," Energies, MDPI, vol. 11(7), pages 1-35, July.
    2. Mishnaevsky, Leon, 2019. "Repair of wind turbine blades: Review of methods and related computational mechanics problems," Renewable Energy, Elsevier, vol. 140(C), pages 828-839.
    3. Yu, Haiyan & Zhang, Mingjie, 2021. "Effects of side ratio on energy harvesting from transverse galloping of a rectangular cylinder," Energy, Elsevier, vol. 226(C).
    4. Orrego, Santiago & Shoele, Kourosh & Ruas, Andre & Doran, Kyle & Caggiano, Brett & Mittal, Rajat & Kang, Sung Hoon, 2017. "Harvesting ambient wind energy with an inverted piezoelectric flag," Applied Energy, Elsevier, vol. 194(C), pages 212-222.
    5. Shakeel, Muhammad & Rehman, Khalid & Ahmad, Salman & Amin, Mohsin & Iqbal, Nadeem & Khan, Arshad, 2021. "A low-cost printed organic thermoelectric generator for low-temperature energy harvesting," Renewable Energy, Elsevier, vol. 167(C), pages 853-860.
    6. Zhao, Liya & Yang, Yaowen, 2018. "An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting," Applied Energy, Elsevier, vol. 212(C), pages 233-243.
    7. Wei, Chongfeng & Jing, Xingjian, 2017. "A comprehensive review on vibration energy harvesting: Modelling and realization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1-18.
    8. Zeadally, Sherali & Shaikh, Faisal Karim & Talpur, Anum & Sheng, Quan Z., 2020. "Design architectures for energy harvesting in the Internet of Things," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    9. Hassan Elahi & Khushboo Munir & Marco Eugeni & Sofiane Atek & Paolo Gaudenzi, 2020. "Energy Harvesting towards Self-Powered IoT Devices," Energies, MDPI, vol. 13(21), pages 1-31, October.
    10. Watson, Simon & Moro, Alberto & Reis, Vera & Baniotopoulos, Charalampos & Barth, Stephan & Bartoli, Gianni & Bauer, Florian & Boelman, Elisa & Bosse, Dennis & Cherubini, Antonello & Croce, Alessandro , 2019. "Future emerging technologies in the wind power sector: A European perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James Deva Koresh Hezekiah & Karnam Chandrakumar Ramya & Sathya Bama Krishna Radhakrishnan & Vishnu Murthy Kumarasamy & Malathi Devendran & Avudaiammal Ramalingam & Rajagopal Maheswar, 2023. "Review of Next-Generation Wireless Devices with Self-Energy Harvesting for Sustainability Improvement," Energies, MDPI, vol. 16(13), pages 1-15, July.
    2. Taekyun Kim & Jihoon Kim & Tae Hee Lee, 2023. "Structure-Circuit Resistor Integrated Design Optimization of Piezoelectric Energy Harvester Considering Stress Constraints," Energies, MDPI, vol. 16(9), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Lin, S.X. & Wang, L., 2019. "Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters," Applied Energy, Elsevier, vol. 254(C).
    2. Xiaobiao Shan & Haigang Tian & Han Cao & Tao Xie, 2020. "Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration," Energies, MDPI, vol. 13(12), pages 1-19, June.
    3. Silva-Leon, Jorge & Cioncolini, Andrea & Nabawy, Mostafa R.A. & Revell, Alistair & Kennaugh, Andrew, 2019. "Simultaneous wind and solar energy harvesting with inverted flags," Applied Energy, Elsevier, vol. 239(C), pages 846-858.
    4. Zhao, Lin-Chuan & Zou, Hong-Xiang & Yan, Ge & Liu, Feng-Rui & Tan, Ting & Zhang, Wen-Ming & Peng, Zhi-Ke & Meng, Guang, 2019. "A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester," Applied Energy, Elsevier, vol. 239(C), pages 735-746.
    5. Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
    6. Latif, Usman & Dowell, Earl H. & Uddin, E. & Younis, M.Y. & Frisch, H.M., 2024. "Comparative analysis of flag based energy harvester undergoing extraneous induced excitation," Energy, Elsevier, vol. 295(C).
    7. Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Wang, L., 2019. "Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections," Energy, Elsevier, vol. 167(C), pages 970-981.
    8. David Omooria Masara & Hassan El Gamal & Ossama Mokhiamar, 2021. "Split Cantilever Multi-Resonant Piezoelectric Energy Harvester for Low-Frequency Application," Energies, MDPI, vol. 14(16), pages 1-15, August.
    9. Sun, Weipeng & Zhao, Daoli & Tan, Ting & Yan, Zhimiao & Guo, Pengcheng & Luo, Xingqi, 2019. "Low velocity water flow energy harvesting using vortex induced vibration and galloping," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Chen, Shun & Zhao, Liya, 2023. "A quasi-zero stiffness two degree-of-freedom nonlinear galloping oscillator for ultra-low wind speed aeroelastic energy harvesting," Applied Energy, Elsevier, vol. 331(C).
    11. Kaiyuan Zhao & Qichang Zhang & Wei Wang, 2019. "Optimization of Galloping Piezoelectric Energy Harvester with V-Shaped Groove in Low Wind Speed," Energies, MDPI, vol. 12(24), pages 1-18, December.
    12. Li, Zhongjie & Yang, Zhengbao & Naguib, Hani E., 2020. "Introducing revolute joints into piezoelectric energy harvesters," Energy, Elsevier, vol. 192(C).
    13. Shan, Xiaobiao & Tian, Haigang & Chen, Danpeng & Xie, Tao, 2019. "A curved panel energy harvester for aeroelastic vibration," Applied Energy, Elsevier, vol. 249(C), pages 58-66.
    14. Zhuang Lu & Quan Wen & Xianming He & Zhiyu Wen, 2019. "A Nonlinear Broadband Electromagnetic Vibration Energy Harvester Based on Double-Clamped Beam," Energies, MDPI, vol. 12(14), pages 1-12, July.
    15. Qu, Shuai & Ren, Yuhao & Hu, Guobiao & Ding, Wei & Dong, Liwei & Yang, Jizhong & Wu, Zaixin & Zhu, Shengyang & Yang, Yaowen & Zhai, Wanming, 2024. "Event-driven piezoelectric energy harvesting for railway field applications," Applied Energy, Elsevier, vol. 364(C).
    16. Liu, Feng-Rui & Zhang, Wen-Ming & Zhao, Lin-Chuan & Zou, Hong-Xiang & Tan, Ting & Peng, Zhi-Ke & Meng, Guang, 2020. "Performance enhancement of wind energy harvester utilizing wake flow induced by double upstream flat-plates," Applied Energy, Elsevier, vol. 257(C).
    17. Salazar, R. & Abdelkefi, A., 2020. "Nonlinear analysis of a piezoelectric energy harvester in body undulatory caudal fin aquatic unmanned vehicles," Applied Energy, Elsevier, vol. 263(C).
    18. Andrzej Michalski & Zbigniew Watral, 2021. "Problems of Powering End Devices in Wireless Networks of the Internet of Things," Energies, MDPI, vol. 14(9), pages 1-15, April.
    19. Javed, U. & Abdelkefi, A., 2018. "Role of the galloping force and moment of inertia of inclined square cylinders on the performance of hybrid galloping energy harvesters," Applied Energy, Elsevier, vol. 231(C), pages 259-276.
    20. Salazar, R. & Serrano, M. & Abdelkefi, A., 2020. "Fatigue in piezoelectric ceramic vibrational energy harvesting: A review," Applied Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2498-:d:544468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.