Using high-frequency SCADA data for wind turbine performance monitoring: A sensitivity study
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2018.07.068
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Marvuglia, Antonino & Messineo, Antonio, 2012. "Monitoring of wind farms’ power curves using machine learning techniques," Applied Energy, Elsevier, vol. 98(C), pages 574-583.
- Taslimi-Renani, Ehsan & Modiri-Delshad, Mostafa & Elias, Mohamad Fathi Mohamad & Rahim, Nasrudin Abd., 2016. "Development of an enhanced parametric model for wind turbine power curve," Applied Energy, Elsevier, vol. 177(C), pages 544-552.
- White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
- Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
- Lydia, M. & Kumar, S. Suresh & Selvakumar, A. Immanuel & Prem Kumar, G. Edwin, 2014. "A comprehensive review on wind turbine power curve modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 452-460.
- Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
- Ouyang, Tinghui & Kusiak, Andrew & He, Yusen, 2017. "Modeling wind-turbine power curve: A data partitioning and mining approach," Renewable Energy, Elsevier, vol. 102(PA), pages 1-8.
- Cambron, P. & Lepvrier, R. & Masson, C. & Tahan, A. & Pelletier, F., 2016. "Power curve monitoring using weighted moving average control charts," Renewable Energy, Elsevier, vol. 94(C), pages 126-135.
- Papatheou, Evangelos & Dervilis, Nikolaos & Maguire, Andrew E. & Campos, Carles & Antoniadou, Ifigeneia & Worden, Keith, 2017. "Performance monitoring of a wind turbine using extreme function theory," Renewable Energy, Elsevier, vol. 113(C), pages 1490-1502.
- Pelletier, Francis & Masson, Christian & Tahan, Antoine, 2016. "Wind turbine power curve modelling using artificial neural network," Renewable Energy, Elsevier, vol. 89(C), pages 207-214.
- García Márquez, Fausto Pedro & Tobias, Andrew Mark & Pinar Pérez, Jesús María & Papaelias, Mayorkinos, 2012. "Condition monitoring of wind turbines: Techniques and methods," Renewable Energy, Elsevier, vol. 46(C), pages 169-178.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mehlan, Felix C. & Nejad, Amir R., 2023. "Rotor imbalance detection and diagnosis in floating wind turbines by means of drivetrain condition monitoring," Renewable Energy, Elsevier, vol. 212(C), pages 70-81.
- Francesco Castellani & Luigi Garibaldi & Alessandro Paolo Daga & Davide Astolfi & Francesco Natili, 2020. "Diagnosis of Faulty Wind Turbine Bearings Using Tower Vibration Measurements," Energies, MDPI, vol. 13(6), pages 1-18, March.
- Verstraeten, Timothy & Nowé, Ann & Keller, Jonathan & Guo, Yi & Sheng, Shuangwen & Helsen, Jan, 2019. "Fleetwide data-enabled reliability improvement of wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 428-437.
- Davide Astolfi & Francesco Castellani, 2019. "Wind Turbine Power Curve Upgrades: Part II," Energies, MDPI, vol. 12(8), pages 1-20, April.
- Guo, Peng & Gan, Yu & Infield, David, 2022. "Wind turbine performance degradation monitoring using DPGMM and Mahalanobis distance," Renewable Energy, Elsevier, vol. 200(C), pages 1-9.
- John Thomas Lyons & Tuhfe Göçmen, 2021. "Applied Machine Learning Techniques for Performance Analysis in Large Wind Farms," Energies, MDPI, vol. 14(13), pages 1-28, June.
- Dao, Phong B., 2022. "On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines," Applied Energy, Elsevier, vol. 318(C).
- Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Ciulla, G. & D’Amico, A. & Di Dio, V. & Lo Brano, V., 2019. "Modelling and analysis of real-world wind turbine power curves: Assessing deviations from nominal curve by neural networks," Renewable Energy, Elsevier, vol. 140(C), pages 477-492.
- Wolf-Gerrit Früh, 2023. "Assessing the Performance of Small Wind Energy Systems Using Regional Weather Data," Energies, MDPI, vol. 16(8), pages 1-21, April.
- Heylen, Evelyn & Teng, Fei & Strbac, Goran, 2021. "Challenges and opportunities of inertia estimation and forecasting in low-inertia power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Huifan Zeng & Juchuan Dai & Chengming Zuo & Huanguo Chen & Mimi Li & Fan Zhang, 2022. "Correlation Investigation of Wind Turbine Multiple Operating Parameters Based on SCADA Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
- Alessandro Murgia & Robbert Verbeke & Elena Tsiporkova & Ludovico Terzi & Davide Astolfi, 2023. "Discussion on the Suitability of SCADA-Based Condition Monitoring for Wind Turbine Fault Diagnosis through Temperature Data Analysis," Energies, MDPI, vol. 16(2), pages 1-20, January.
- Kerman López de Calle & Susana Ferreiro & Constantino Roldán-Paraponiaris & Alain Ulazia, 2019. "A Context-Aware Oil Debris-Based Health Indicator for Wind Turbine Gearbox Condition Monitoring," Energies, MDPI, vol. 12(17), pages 1-19, September.
- Diogo Menezes & Mateus Mendes & Jorge Alexandre Almeida & Torres Farinha, 2020. "Wind Farm and Resource Datasets: A Comprehensive Survey and Overview," Energies, MDPI, vol. 13(18), pages 1-24, September.
- Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
- Ruiming, Fang & Minling, Wu & xinhua, Guo & Rongyan, Shang & Pengfei, Shao, 2020. "Identifying early defects of wind turbine based on SCADA data and dynamical network marker," Renewable Energy, Elsevier, vol. 154(C), pages 625-635.
- Kevin Leahy & Colm Gallagher & Peter O’Donovan & Dominic T. J. O’Sullivan, 2019. "Issues with Data Quality for Wind Turbine Condition Monitoring and Reliability Analyses," Energies, MDPI, vol. 12(2), pages 1-22, January.
- Davide Astolfi & Ravi Pandit & Andrea Lombardi & Ludovico Terzi, 2022. "Multivariate Data-Driven Models for Wind Turbine Power Curves including Sub-Component Temperatures," Energies, MDPI, vol. 16(1), pages 1-18, December.
- Li, Yanting & Wu, Zhenyu, 2020. "A condition monitoring approach of multi-turbine based on VAR model at farm level," Renewable Energy, Elsevier, vol. 166(C), pages 66-80.
- Zhang, Chen & Hu, Di & Yang, Tao, 2022. "Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Dao, Phong B., 2022. "Condition monitoring and fault diagnosis of wind turbines based on structural break detection in SCADA data," Renewable Energy, Elsevier, vol. 185(C), pages 641-654.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rogers, T.J. & Gardner, P. & Dervilis, N. & Worden, K. & Maguire, A.E. & Papatheou, E. & Cross, E.J., 2020. "Probabilistic modelling of wind turbine power curves with application of heteroscedastic Gaussian Process regression," Renewable Energy, Elsevier, vol. 148(C), pages 1124-1136.
- Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
- Yan, Jie & Zhang, Hao & Liu, Yongqian & Han, Shuang & Li, Li, 2019. "Uncertainty estimation for wind energy conversion by probabilistic wind turbine power curve modelling," Applied Energy, Elsevier, vol. 239(C), pages 1356-1370.
- Miguel Á. Rodríguez-López & Emilio Cerdá & Pablo del Rio, 2020. "Modeling Wind-Turbine Power Curves: Effects of Environmental Temperature on Wind Energy Generation," Energies, MDPI, vol. 13(18), pages 1-21, September.
- Ravi Pandit & David Infield, 2018. "Gaussian Process Operational Curves for Wind Turbine Condition Monitoring," Energies, MDPI, vol. 11(7), pages 1-20, June.
- Mingzhe Zou & Sasa Z. Djokic, 2020. "A Review of Approaches for the Detection and Treatment of Outliers in Processing Wind Turbine and Wind Farm Measurements," Energies, MDPI, vol. 13(16), pages 1-30, August.
- Han, Shuang & Qiao, Yanhui & Yan, Ping & Yan, Jie & Liu, Yongqian & Li, Li, 2020. "Wind turbine power curve modeling based on interval extreme probability density for the integration of renewable energies and electric vehicles," Renewable Energy, Elsevier, vol. 157(C), pages 190-203.
- Hu, Yang & Xi, Yunhua & Pan, Chenyang & Li, Gengda & Chen, Baowei, 2020. "Daily condition monitoring of grid-connected wind turbine via high-fidelity power curve and its comprehensive rating," Renewable Energy, Elsevier, vol. 146(C), pages 2095-2111.
- Nasery, Praanjal & Aziz Ezzat, Ahmed, 2023. "Yaw-adjusted wind power curve modeling: A local regression approach," Renewable Energy, Elsevier, vol. 202(C), pages 1368-1376.
- Marino Marrocu & Luca Massidda, 2017. "A Simple and Effective Approach for the Prediction of Turbine Power Production From Wind Speed Forecast," Energies, MDPI, vol. 10(12), pages 1-14, November.
- Usama Aziz & Sylvie Charbonnier & Christophe Berenguer & Alexis Lebranchu & Frederic Prevost, 2022. "A Multi-Turbine Approach for Improving Performance of Wind Turbine Power-Based Fault Detection Methods," Energies, MDPI, vol. 15(8), pages 1-21, April.
- Meyer, Angela, 2021. "Multi-target normal behaviour models for wind farm condition monitoring," Applied Energy, Elsevier, vol. 300(C).
- Marčiukaitis, Mantas & Žutautaitė, Inga & Martišauskas, Linas & Jokšas, Benas & Gecevičius, Giedrius & Sfetsos, Athanasios, 2017. "Non-linear regression model for wind turbine power curve," Renewable Energy, Elsevier, vol. 113(C), pages 732-741.
- Cambron, P. & Lepvrier, R. & Masson, C. & Tahan, A. & Pelletier, F., 2016. "Power curve monitoring using weighted moving average control charts," Renewable Energy, Elsevier, vol. 94(C), pages 126-135.
- Karamichailidou, Despina & Kaloutsa, Vasiliki & Alexandridis, Alex, 2021. "Wind turbine power curve modeling using radial basis function neural networks and tabu search," Renewable Energy, Elsevier, vol. 163(C), pages 2137-2152.
- Xu, Keyi & Yan, Jie & Zhang, Hao & Zhang, Haoran & Han, Shuang & Liu, Yongqian, 2021. "Quantile based probabilistic wind turbine power curve model," Applied Energy, Elsevier, vol. 296(C).
- Yang, Hsu-Hao & Huang, Mei-Ling & Lai, Chun-Mei & Jin, Jhih-Rong, 2018. "An approach combining data mining and control charts-based model for fault detection in wind turbines," Renewable Energy, Elsevier, vol. 115(C), pages 808-816.
- Sergio Velázquez Medina & José A. Carta & Ulises Portero Ajenjo, 2019. "Performance Sensitivity of a Wind Farm Power Curve Model to Different Signals of the Input Layer of ANNs: Case Studies in the Canary Islands," Complexity, Hindawi, vol. 2019, pages 1-11, March.
- Mehrjoo, Mehrdad & Jafari Jozani, Mohammad & Pawlak, Miroslaw, 2021. "Toward hybrid approaches for wind turbine power curve modeling with balanced loss functions and local weighting schemes," Energy, Elsevier, vol. 218(C).
- Wolf-Gerrit Früh, 2023. "Assessing the Performance of Small Wind Energy Systems Using Regional Weather Data," Energies, MDPI, vol. 16(8), pages 1-21, April.
More about this item
Keywords
Wind turbine; Power curve; High-frequency data; Performance monitoring; SCADA data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:131:y:2019:i:c:p:841-853. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.