IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i6p1474-d334973.html
   My bibliography  Save this article

Diagnosis of Faulty Wind Turbine Bearings Using Tower Vibration Measurements

Author

Listed:
  • Francesco Castellani

    (Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy)

  • Luigi Garibaldi

    (Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Alessandro Paolo Daga

    (Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Davide Astolfi

    (Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy)

  • Francesco Natili

    (Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy)

Abstract

Condition monitoring of gear-based mechanical systems in non-stationary operation conditions is in general very challenging. This issue is particularly important for wind energy technology because most of the modern wind turbines are geared and gearbox damages account for at least the 20% of their unavailability time. In this work, a new method for the diagnosis of drive-train bearings damages is proposed: the general idea is that vibrations are measured at the tower instead of at the gearbox. This implies that measurements can be performed without impacting the wind turbine operation. The test case considered in this work is a wind farm owned by the Renvico company, featuring six wind turbines with 2 MW of rated power each. A measurement campaign has been conducted in winter 2019 and vibration measurements have been acquired at five wind turbines in the farm. The rationale for this choice is that, when the measurements have been acquired, three wind turbines were healthy, one wind turbine had recently recovered from a planetary bearing fault, and one wind turbine was undergoing a high speed shaft bearing fault. The healthy wind turbines are selected as references and the damaged and recovered are selected as targets: vibration measurements are processed through a multivariate Novelty Detection algorithm in the feature space, with the objective of distinguishing the target wind turbines with respect to the reference ones. The application of this algorithm is justified by univariate statistical tests on the selected time-domain features and by a visual inspection of the data set via Principal Component Analysis. Finally, a novelty index based on the Mahalanobis distance is used to detect the anomalous conditions at the damaged wind turbine. The main result of the study is that the statistical novelty of the damaged wind turbine data set arises clearly, and this supports that the proposed measurement and processing methods are promising for wind turbine condition monitoring.

Suggested Citation

  • Francesco Castellani & Luigi Garibaldi & Alessandro Paolo Daga & Davide Astolfi & Francesco Natili, 2020. "Diagnosis of Faulty Wind Turbine Bearings Using Tower Vibration Measurements," Energies, MDPI, vol. 13(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1474-:d:334973
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/6/1474/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/6/1474/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kerman López de Calle & Susana Ferreiro & Constantino Roldán-Paraponiaris & Alain Ulazia, 2019. "A Context-Aware Oil Debris-Based Health Indicator for Wind Turbine Gearbox Condition Monitoring," Energies, MDPI, vol. 12(17), pages 1-19, September.
    2. Md Liton Hossain & Ahmed Abu-Siada & S. M. Muyeen, 2018. "Methods for Advanced Wind Turbine Condition Monitoring and Early Diagnosis: A Literature Review," Energies, MDPI, vol. 11(5), pages 1-14, May.
    3. Ehsan Mollasalehi & David Wood & Qiao Sun, 2017. "Indicative Fault Diagnosis of Wind Turbine Generator Bearings Using Tower Sound and Vibration," Energies, MDPI, vol. 10(11), pages 1-14, November.
    4. Elforjani, Mohamed & Bechhoefer, Eric, 2018. "Analysis of extremely modulated faulty wind turbine data using spectral kurtosis and signal intensity estimator," Renewable Energy, Elsevier, vol. 127(C), pages 258-268.
    5. Sequeira, C. & Pacheco, A. & Galego, P. & Gorbeña, E., 2019. "Analysis of the efficiency of wind turbine gearboxes using the temperature variable," Renewable Energy, Elsevier, vol. 135(C), pages 465-472.
    6. Elforjani, Mohamed, 2020. "Diagnosis and prognosis of real world wind turbine gears," Renewable Energy, Elsevier, vol. 147(P1), pages 1676-1693.
    7. Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Eiriksson, Egill Thor, 2016. "Analysing RMS and peak values of vibration signals for condition monitoring of wind turbine gearboxes," Renewable Energy, Elsevier, vol. 91(C), pages 90-106.
    8. Gonzalez, Elena & Stephen, Bruce & Infield, David & Melero, Julio J., 2019. "Using high-frequency SCADA data for wind turbine performance monitoring: A sensitivity study," Renewable Energy, Elsevier, vol. 131(C), pages 841-853.
    9. Bhardwaj, U. & Teixeira, A.P. & Soares, C. Guedes, 2019. "Reliability prediction of an offshore wind turbine gearbox," Renewable Energy, Elsevier, vol. 141(C), pages 693-706.
    10. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Fouad Slaoui-Hasnaoui & Tommy Andy Tameghe & Gabriel Ekemb, 2014. "Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges," Energies, MDPI, vol. 7(4), pages 1-36, April.
    11. Peng Guo & Jian Fu & XiYun Yang, 2018. "Condition Monitoring and Fault Diagnosis of Wind Turbines Gearbox Bearing Temperature Based on Kolmogorov-Smirnov Test and Convolutional Neural Network Model," Energies, MDPI, vol. 11(9), pages 1-16, August.
    12. Peng Qian & Xiange Tian & Jamil Kanfoud & Joash Lap Yan Lee & Tat-Hean Gan, 2019. "A Novel Condition Monitoring Method of Wind Turbines Based on Long Short-Term Memory Neural Network," Energies, MDPI, vol. 12(18), pages 1-15, September.
    13. Pu Shi & Wenxian Yang & Meiping Sheng & Minqing Wang, 2017. "An Enhanced Empirical Wavelet Transform for Features Extraction from Wind Turbine Condition Monitoring Signals," Energies, MDPI, vol. 10(7), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jersson X. Leon-Medina & Francesc Pozo, 2023. "Moving towards Preventive Maintenance in Wind Turbine Structural Control and Health Monitoring," Energies, MDPI, vol. 16(6), pages 1-4, March.
    2. Jong-Yih Kuo & Shang-Yi You & Hui-Chi Lin & Chao-Yang Hsu & Baiying Lei, 2022. "Constructing Condition Monitoring Model of Wind Turbine Blades," Mathematics, MDPI, vol. 10(6), pages 1-13, March.
    3. Alessandro Murgia & Robbert Verbeke & Elena Tsiporkova & Ludovico Terzi & Davide Astolfi, 2023. "Discussion on the Suitability of SCADA-Based Condition Monitoring for Wind Turbine Fault Diagnosis through Temperature Data Analysis," Energies, MDPI, vol. 16(2), pages 1-20, January.
    4. Yolanda Vidal, 2023. "Artificial Intelligence for Wind Turbine Condition Monitoring," Energies, MDPI, vol. 16(4), pages 1-4, February.
    5. Mingzhu Tang & Zixin Liang & Huawei Wu & Zimin Wang, 2021. "Fault Diagnosis Method for Wind Turbine Gearboxes Based on IWOA-RF," Energies, MDPI, vol. 14(19), pages 1-13, October.
    6. Jannis N. Kahlen & Michael Andres & Albert Moser, 2021. "Improving Machine-Learning Diagnostics with Model-Based Data Augmentation Showcased for a Transformer Fault," Energies, MDPI, vol. 14(20), pages 1-20, October.
    7. Cristian Velandia-Cardenas & Yolanda Vidal & Francesc Pozo, 2021. "Wind Turbine Fault Detection Using Highly Imbalanced Real SCADA Data," Energies, MDPI, vol. 14(6), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ravi Kumar Pandit & Davide Astolfi & Isidro Durazo Cardenas, 2023. "A Review of Predictive Techniques Used to Support Decision Making for Maintenance Operations of Wind Turbines," Energies, MDPI, vol. 16(4), pages 1-17, February.
    2. Xin Wu & Hong Wang & Guoqian Jiang & Ping Xie & Xiaoli Li, 2019. "Monitoring Wind Turbine Gearbox with Echo State Network Modeling and Dynamic Threshold Using SCADA Vibration Data," Energies, MDPI, vol. 12(6), pages 1-19, March.
    3. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    4. Ruiming, Fang & Minling, Wu & xinhua, Guo & Rongyan, Shang & Pengfei, Shao, 2020. "Identifying early defects of wind turbine based on SCADA data and dynamical network marker," Renewable Energy, Elsevier, vol. 154(C), pages 625-635.
    5. Merainani, Boualem & Laddada, Sofiane & Bechhoefer, Eric & Chikh, Mohamed Abdessamed Ait & Benazzouz, Djamel, 2022. "An integrated methodology for estimating the remaining useful life of high-speed wind turbine shaft bearings with limited samples," Renewable Energy, Elsevier, vol. 182(C), pages 1141-1151.
    6. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    7. Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
    8. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    9. Kong, Yun & Wang, Tianyang & Chu, Fulei, 2019. "Meshing frequency modulation assisted empirical wavelet transform for fault diagnosis of wind turbine planetary ring gear," Renewable Energy, Elsevier, vol. 132(C), pages 1373-1388.
    10. Zemali, Zakaria & Cherroun, Lakhmissi & Hadroug, Nadji & Hafaifa, Ahmed & Iratni, Abdelhamid & Alshammari, Obaid S. & Colak, Ilhami, 2023. "Robust intelligent fault diagnosis strategy using Kalman observers and neuro-fuzzy systems for a wind turbine benchmark," Renewable Energy, Elsevier, vol. 205(C), pages 873-898.
    11. Davide Astolfi & Francesco Castellani, 2019. "Wind Turbine Power Curve Upgrades: Part II," Energies, MDPI, vol. 12(8), pages 1-20, April.
    12. Pan, Yubin & Hong, Rongjing & Chen, Jie & Wu, Weiwei, 2020. "A hybrid DBN-SOM-PF-based prognostic approach of remaining useful life for wind turbine gearbox," Renewable Energy, Elsevier, vol. 152(C), pages 138-154.
    13. Han Peng & Songyin Li & Linjian Shangguan & Yisa Fan & Hai Zhang, 2023. "Analysis of Wind Turbine Equipment Failure and Intelligent Operation and Maintenance Research," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    14. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    15. Gang Li & Weidong Zhu, 2022. "A Review on Up-to-Date Gearbox Technologies and Maintenance of Tidal Current Energy Converters," Energies, MDPI, vol. 15(23), pages 1-24, December.
    16. Liu, Y. & Hajj, M. & Bao, Y., 2022. "Review of robot-based damage assessment for offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    17. Afef Fekih & Hamed Habibi & Silvio Simani, 2022. "Fault Diagnosis and Fault Tolerant Control of Wind Turbines: An Overview," Energies, MDPI, vol. 15(19), pages 1-21, September.
    18. Lei Fu & Yanding Wei & Sheng Fang & Xiaojun Zhou & Junqiang Lou, 2017. "Condition Monitoring for Roller Bearings of Wind Turbines Based on Health Evaluation under Variable Operating States," Energies, MDPI, vol. 10(10), pages 1-21, October.
    19. Pulivarthi Nageswara Rao & Ramesh Devarapalli & Fausto Pedro García Márquez & Hasmat Malik, 2020. "Global Sliding-Mode Suspension Control of Bearingless Switched Reluctance Motor under Eccentric Faults to Increase Reliability of Motor," Energies, MDPI, vol. 13(20), pages 1-38, October.
    20. Li, Yanting & Wu, Zhenyu, 2020. "A condition monitoring approach of multi-turbine based on VAR model at farm level," Renewable Energy, Elsevier, vol. 166(C), pages 66-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1474-:d:334973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.