On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2022.119209
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
- Xiang, Ling & Yang, Xin & Hu, Aijun & Su, Hao & Wang, Penghe, 2022. "Condition monitoring and anomaly detection of wind turbine based on cascaded and bidirectional deep learning networks," Applied Energy, Elsevier, vol. 305(C).
- Qu, Fuming & Liu, Jinhai & Zhu, Hongfei & Zhou, Bowen, 2020. "Wind turbine fault detection based on expanded linguistic terms and rules using non-singleton fuzzy logic," Applied Energy, Elsevier, vol. 262(C).
- Engle, Robert & Granger, Clive, 2015.
"Co-integration and error correction: Representation, estimation, and testing,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
- Engle, Robert F & Granger, Clive W J, 1987. "Co-integration and Error Correction: Representation, Estimation, and Testing," Econometrica, Econometric Society, vol. 55(2), pages 251-276, March.
- Yang, Wenxian & Little, Christian & Court, Richard, 2014. "S-Transform and its contribution to wind turbine condition monitoring," Renewable Energy, Elsevier, vol. 62(C), pages 137-146.
- Sun, Peng & Li, Jian & Wang, Caisheng & Lei, Xiao, 2016. "A generalized model for wind turbine anomaly identification based on SCADA data," Applied Energy, Elsevier, vol. 168(C), pages 550-567.
- Phong B. Dao, 2021. "A CUSUM-Based Approach for Condition Monitoring and Fault Diagnosis of Wind Turbines," Energies, MDPI, vol. 14(11), pages 1-19, June.
- Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
- Gonzalez, Elena & Stephen, Bruce & Infield, David & Melero, Julio J., 2019. "Using high-frequency SCADA data for wind turbine performance monitoring: A sensitivity study," Renewable Energy, Elsevier, vol. 131(C), pages 841-853.
- Meyer, Angela, 2021. "Multi-target normal behaviour models for wind farm condition monitoring," Applied Energy, Elsevier, vol. 300(C).
- Kusiak, Andrew & Li, Wenyan, 2011. "The prediction and diagnosis of wind turbine faults," Renewable Energy, Elsevier, vol. 36(1), pages 16-23.
- Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
- Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
- Yang, Wenxian & Court, Richard & Jiang, Jiesheng, 2013. "Wind turbine condition monitoring by the approach of SCADA data analysis," Renewable Energy, Elsevier, vol. 53(C), pages 365-376.
- Castellani, Francesco & Astolfi, Davide & Sdringola, Paolo & Proietti, Stefania & Terzi, Ludovico, 2017. "Analyzing wind turbine directional behavior: SCADA data mining techniques for efficiency and power assessment," Applied Energy, Elsevier, vol. 185(P2), pages 1076-1086.
- Dao, Phong B., 2022. "Condition monitoring and fault diagnosis of wind turbines based on structural break detection in SCADA data," Renewable Energy, Elsevier, vol. 185(C), pages 641-654.
- García Márquez, Fausto Pedro & Tobias, Andrew Mark & Pinar Pérez, Jesús María & Papaelias, Mayorkinos, 2012. "Condition monitoring of wind turbines: Techniques and methods," Renewable Energy, Elsevier, vol. 46(C), pages 169-178.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fang, Shitong & Chen, Keyu & Lai, Zhihui & Zhou, Shengxi & Liao, Wei-Hsin, 2023. "Analysis and experiment of auxetic centrifugal softening impact energy harvesting from ultra-low-frequency rotational excitations," Applied Energy, Elsevier, vol. 331(C).
- Phong B. Dao, 2023. "On Cointegration Analysis for Condition Monitoring and Fault Detection of Wind Turbines Using SCADA Data," Energies, MDPI, vol. 16(5), pages 1-17, March.
- Zhang, Shuo & Robinson, Emma & Basu, Malabika, 2022. "Hybrid Gaussian process regression and Fuzzy Inference System based approach for condition monitoring at the rotor side of a doubly fed induction generator," Renewable Energy, Elsevier, vol. 198(C), pages 936-946.
- Boudy Bilal & Kaan Yetilmezsoy & Mohammed Ouassaid, 2024. "Benchmarking of Various Flexible Soft-Computing Strategies for the Accurate Estimation of Wind Turbine Output Power," Energies, MDPI, vol. 17(3), pages 1-36, February.
- Paweł Knes & Phong B. Dao, 2024. "Machine Learning and Cointegration for Wind Turbine Monitoring and Fault Detection: From a Comparative Study to a Combined Approach," Energies, MDPI, vol. 17(20), pages 1-21, October.
- Lorin Jenkel & Stefan Jonas & Angela Meyer, 2023. "Privacy-Preserving Fleet-Wide Learning of Wind Turbine Conditions with Federated Learning," Energies, MDPI, vol. 16(17), pages 1-29, September.
- Arturo Y. Jaen-Cuellar & David A. Elvira-Ortiz & Roque A. Osornio-Rios & Jose A. Antonino-Daviu, 2022. "Advances in Fault Condition Monitoring for Solar Photovoltaic and Wind Turbine Energy Generation: A Review," Energies, MDPI, vol. 15(15), pages 1-36, July.
- Juan Zhang & Zhongli Zhu & Huiqing Hao, 2023. "The Effects of Climate Variation and Anthropogenic Activity on Karst Spring Discharge Based on the Wavelet Coherence Analysis and the Multivariate Statistical," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
- Khadija Attouri & Majdi Mansouri & Mansour Hajji & Abdelmalek Kouadri & Kais Bouzrara & Hazem Nounou, 2023. "Wind Power Converter Fault Diagnosis Using Reduced Kernel PCA-Based BiLSTM," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
- Tian, Ai-Qing & Wang, Xiao-Yang & Xu, Heying & Pan, Jeng-Shyang & Snášel, Václav & Lv, Hong-Xia, 2024. "Multi-objective optimization model for railway heavy-haul traffic: Addressing carbon emissions reduction and transport efficiency improvement," Energy, Elsevier, vol. 294(C).
- Güven, Aykut Fatih, 2024. "Integrating electric vehicles into hybrid microgrids: A stochastic approach to future-ready renewable energy solutions and management," Energy, Elsevier, vol. 303(C).
- Wang, Anqi & Pei, Yan & Zhu, Yunyi & Qian, Zheng, 2023. "Wind turbine fault detection and identification through self-attention-based mechanism embedded with a multivariable query pattern," Renewable Energy, Elsevier, vol. 211(C), pages 918-937.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dao, Phong B., 2022. "Condition monitoring and fault diagnosis of wind turbines based on structural break detection in SCADA data," Renewable Energy, Elsevier, vol. 185(C), pages 641-654.
- Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
- Phong B. Dao, 2023. "On Cointegration Analysis for Condition Monitoring and Fault Detection of Wind Turbines Using SCADA Data," Energies, MDPI, vol. 16(5), pages 1-17, March.
- Li, Yanting & Wu, Zhenyu, 2020. "A condition monitoring approach of multi-turbine based on VAR model at farm level," Renewable Energy, Elsevier, vol. 166(C), pages 66-80.
- Xiang, Ling & Yang, Xin & Hu, Aijun & Su, Hao & Wang, Penghe, 2022. "Condition monitoring and anomaly detection of wind turbine based on cascaded and bidirectional deep learning networks," Applied Energy, Elsevier, vol. 305(C).
- Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
- Paweł Knes & Phong B. Dao, 2024. "Machine Learning and Cointegration for Wind Turbine Monitoring and Fault Detection: From a Comparative Study to a Combined Approach," Energies, MDPI, vol. 17(20), pages 1-21, October.
- Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
- Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
- Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
- Kevin Leahy & Colm Gallagher & Peter O’Donovan & Dominic T. J. O’Sullivan, 2019. "Issues with Data Quality for Wind Turbine Condition Monitoring and Reliability Analyses," Energies, MDPI, vol. 12(2), pages 1-22, January.
- Zhan, Jun & Wu, Chengkun & Yang, Canqun & Miao, Qiucheng & Wang, Shilin & Ma, Xiandong, 2022. "Condition monitoring of wind turbines based on spatial-temporal feature aggregation networks," Renewable Energy, Elsevier, vol. 200(C), pages 751-766.
- Jesus Gonzalo & Tae-Hwy Lee, 2000.
"On the robustness of cointegration tests when series are fractionally intergrated,"
Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(7), pages 821-827.
- Lee, T.H. & Gonzalo, J., 1995. "On the Robustness of Cointegration Tests when Series Are Fractionally Integrated," The A. Gary Anderson Graduate School of Management 95-11, The A. Gary Anderson Graduate School of Management. University of California Riverside.
- Lee, Tae-Hwy, 1996. "On the robustness of cointegration tests when series are fractionally integrated," DES - Working Papers. Statistics and Econometrics. WS 4542, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
- Caner Demir, 2019. "Macroeconomic Determinants of Stock Market Fluctuations: The Case of BIST-100," Economies, MDPI, vol. 7(1), pages 1-14, February.
- Neil R. Ericsson & James G. MacKinnon, 2002.
"Distributions of error correction tests for cointegration,"
Econometrics Journal, Royal Economic Society, vol. 5(2), pages 285-318, June.
- Neil R. Ericsson & James G. MacKinnon, 1999. "Distributions of error correction tests for cointegration," International Finance Discussion Papers 655, Board of Governors of the Federal Reserve System (U.S.).
- Neil R. Ericsson & James G. MacKinnon, 2000. "Distributions of Error Correction Tests for Cointegration," Econometric Society World Congress 2000 Contributed Papers 0561, Econometric Society.
- Pär Österholm, 2005.
"The Taylor Rule: A Spurious Regression?,"
Bulletin of Economic Research, Wiley Blackwell, vol. 57(3), pages 217-247, July.
- Österholm, Pär, 2003. "The Taylor Rule: A Spurious Regression?," Working Paper Series 2003:20, Uppsala University, Department of Economics.
- Eric Ghysels & J. Isaac Miller, 2014.
"On the Size Distortion from Linearly Interpolating Low-frequency Series for Cointegration Tests,"
Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 14, pages 93-122,
Emerald Group Publishing Limited.
- Eric Ghysels & J. Isaac Miller, 2014. "On the Size Distortion from Linearly Interpolating Low-frequency Series for Cointegration Tests," Working Papers 1403, Department of Economics, University of Missouri.
- Levent KORAP, 2008.
"Exchange Rate Determination Of Tl/Us$:A Co-Integration Approach,"
Istanbul University Econometrics and Statistics e-Journal, Department of Econometrics, Faculty of Economics, Istanbul University, vol. 7(1), pages 24-50, May.
- Levent, Korap, 2008. "Exchange rate determination of TL/US$: a co-integration approach," MPRA Paper 19659, University Library of Munich, Germany.
- Ericsson, Neil R & Hendry, David F & Mizon, Grayham E, 1998.
"Exogeneity, Cointegration, and Economic Policy Analysis,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 370-387, October.
- Neil R. Ericsson & David F. Hendry & Grayham E. Mizon, 1998. "Exogeneity, cointegration, and economic policy analysis," International Finance Discussion Papers 616, Board of Governors of the Federal Reserve System (U.S.).
More about this item
Keywords
Wind turbine; Condition monitoring; Fault detection; Nonparametric statistical test; Wilcoxon rank sum test; SCADA;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:318:y:2022:i:c:s0306261922005748. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.