IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3756-d580308.html
   My bibliography  Save this article

Applied Machine Learning Techniques for Performance Analysis in Large Wind Farms

Author

Listed:
  • John Thomas Lyons

    (DTU Wind Energy, Technical University of Denmark, 4000 Roskilde, Denmark
    Ørsted A/S, 2820 Gentofte, Denmark.)

  • Tuhfe Göçmen

    (DTU Wind Energy, Technical University of Denmark, 4000 Roskilde, Denmark)

Abstract

As the amount of information collected by wind turbines continues to grow, so too does the potential of its leveraging. The application of machine learning techniques as an advanced analytic tool has proven effective in solving tasks whose inherent complexity can outreach expert-based ability. Such is the case presented by this study, in which the dataset to be leveraged is high-dimensional (79 turbines × 7 SCADA channels) and high-frequency (1 Hz). In this paper, a series of machine learning techniques is applied to the retrospective power performance analysis of a withheld test set containing SCADA data collectively representing 2 full days worth of operation at the Horns Rev I offshore wind farm. A sequential machine-learning based methodology is thoroughly explored, refined, then applied to the power performance analysis task of identifying instances of abnormal behaviour; namely instances of wind turbine under and over-performance. The results of the final analysis suggest that a normal behaviour model (NBM), consisting of a uniquely constructed artificial neural network (ANN) variant trained on abnormality filtered dataset, indeed proves effective in accomplishing the power performance analysis objective. Instances of over and under performance captured by the developed NBM network are presented and discussed, including the operation status of the turbines and the uncertainty embedded in the prediction results.

Suggested Citation

  • John Thomas Lyons & Tuhfe Göçmen, 2021. "Applied Machine Learning Techniques for Performance Analysis in Large Wind Farms," Energies, MDPI, vol. 14(13), pages 1-28, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3756-:d:580308
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3756/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3756/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lapira, Edzel & Brisset, Dustin & Davari Ardakani, Hossein & Siegel, David & Lee, Jay, 2012. "Wind turbine performance assessment using multi-regime modeling approach," Renewable Energy, Elsevier, vol. 45(C), pages 86-95.
    2. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    3. Jia, Xiaodong & Jin, Chao & Buzza, Matt & Wang, Wei & Lee, Jay, 2016. "Wind turbine performance degradation assessment based on a novel similarity metric for machine performance curves," Renewable Energy, Elsevier, vol. 99(C), pages 1191-1201.
    4. Gonzalez, Elena & Stephen, Bruce & Infield, David & Melero, Julio J., 2019. "Using high-frequency SCADA data for wind turbine performance monitoring: A sensitivity study," Renewable Energy, Elsevier, vol. 131(C), pages 841-853.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Usama Aziz & Sylvie Charbonnier & Christophe Berenguer & Alexis Lebranchu & Frederic Prevost, 2022. "A Multi-Turbine Approach for Improving Performance of Wind Turbine Power-Based Fault Detection Methods," Energies, MDPI, vol. 15(8), pages 1-21, April.
    2. Davide Astolfi & Ravi Pandit & Ludovico Terzi & Andrea Lombardi, 2022. "Discussion of Wind Turbine Performance Based on SCADA Data and Multiple Test Case Analysis," Energies, MDPI, vol. 15(15), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    2. Miguel Á. Rodríguez-López & Emilio Cerdá & Pablo del Rio, 2020. "Modeling Wind-Turbine Power Curves: Effects of Environmental Temperature on Wind Energy Generation," Energies, MDPI, vol. 13(18), pages 1-21, September.
    3. Usama Aziz & Sylvie Charbonnier & Christophe Berenguer & Alexis Lebranchu & Frederic Prevost, 2022. "A Multi-Turbine Approach for Improving Performance of Wind Turbine Power-Based Fault Detection Methods," Energies, MDPI, vol. 15(8), pages 1-21, April.
    4. Ruiz de la Hermosa González-Carrato, Raúl, 2018. "Wind farm monitoring using Mahalanobis distance and fuzzy clustering," Renewable Energy, Elsevier, vol. 123(C), pages 526-540.
    5. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
    6. Peng Sun & Jian Li & Junsheng Chen & Xiao Lei, 2016. "A Short-Term Outage Model of Wind Turbines with Doubly Fed Induction Generators Based on Supervisory Control and Data Acquisition Data," Energies, MDPI, vol. 9(11), pages 1-21, October.
    7. Antonio Colmenar-Santos & Severo Campíez-Romero & Lorenzo Alfredo Enríquez-Garcia & Clara Pérez-Molina, 2014. "Simplified Analysis of the Electric Power Losses for On-Shore Wind Farms Considering Weibull Distribution Parameters," Energies, MDPI, vol. 7(11), pages 1-30, October.
    8. Zhang, Zijun & Kusiak, Andrew & Song, Zhe, 2013. "Scheduling electric power production at a wind farm," European Journal of Operational Research, Elsevier, vol. 224(1), pages 227-238.
    9. Alessandro Murgia & Robbert Verbeke & Elena Tsiporkova & Ludovico Terzi & Davide Astolfi, 2023. "Discussion on the Suitability of SCADA-Based Condition Monitoring for Wind Turbine Fault Diagnosis through Temperature Data Analysis," Energies, MDPI, vol. 16(2), pages 1-20, January.
    10. Pradeep Singh & Krishan Arora & Umesh C. Rathore & Eunmok Yang & Gyanendra Prasad Joshi & Kwang Chul Son, 2023. "Performance Evaluation of Grid-Connected DFIG-Based WECS with Battery Energy Storage System under Wind Alterations Using FOPID Controller for RSC," Mathematics, MDPI, vol. 11(9), pages 1-29, April.
    11. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Wang, Yili & Tao, Jianquan, 2022. "Operational state assessment of wind turbine gearbox based on long short-term memory networks and fuzzy synthesis," Renewable Energy, Elsevier, vol. 181(C), pages 1167-1176.
    12. Giani, Paolo & Tagle, Felipe & Genton, Marc G. & Castruccio, Stefano & Crippa, Paola, 2020. "Closing the gap between wind energy targets and implementation for emerging countries," Applied Energy, Elsevier, vol. 269(C).
    13. Gonzalez, Elena & Stephen, Bruce & Infield, David & Melero, Julio J., 2019. "Using high-frequency SCADA data for wind turbine performance monitoring: A sensitivity study," Renewable Energy, Elsevier, vol. 131(C), pages 841-853.
    14. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    15. Quan Zhou & Taotao Xiong & Mubin Wang & Chenmeng Xiang & Qingpeng Xu, 2017. "Diagnosis and Early Warning of Wind Turbine Faults Based on Cluster Analysis Theory and Modified ANFIS," Energies, MDPI, vol. 10(7), pages 1-15, July.
    16. Colak, Ilhami & Sagiroglu, Seref & Yesilbudak, Mehmet, 2012. "Data mining and wind power prediction: A literature review," Renewable Energy, Elsevier, vol. 46(C), pages 241-247.
    17. Wolf-Gerrit Früh, 2023. "Assessing the Performance of Small Wind Energy Systems Using Regional Weather Data," Energies, MDPI, vol. 16(8), pages 1-21, April.
    18. Huifan Zeng & Juchuan Dai & Chengming Zuo & Huanguo Chen & Mimi Li & Fan Zhang, 2022. "Correlation Investigation of Wind Turbine Multiple Operating Parameters Based on SCADA Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
    19. Taslimi-Renani, Ehsan & Modiri-Delshad, Mostafa & Elias, Mohamad Fathi Mohamad & Rahim, Nasrudin Abd., 2016. "Development of an enhanced parametric model for wind turbine power curve," Applied Energy, Elsevier, vol. 177(C), pages 544-552.
    20. Wakui, Tetsuya & Yokoyama, Ryohei, 2013. "Wind speed sensorless performance monitoring based on operating behavior for stand-alone vertical axis wind turbine," Renewable Energy, Elsevier, vol. 53(C), pages 49-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3756-:d:580308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.