IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v119y2018icp1-11.html
   My bibliography  Save this article

A dynamic coordinated control strategy of WTG-ES combined system for short-term frequency support

Author

Listed:
  • Li, Yong
  • He, Li
  • Liu, Fang
  • Tan, Yi
  • Cao, Yijia
  • Luo, Longfu
  • Shahidehpour, Mohammod

Abstract

In this article, a dynamic coordinated control strategy is proposed for wind turbine generator (WTG) and energy storage (ES) combined system, which enables the combined system to participate in the short-term frequency regulation of the utility gird. The theoretical analysis of the equivalent inertia of the combined system is performed and the mechanism of the short-term frequency regulation is revealed. The coordinated control strategy is designed considering the variability of wind power and the state of charge (SoC) of ES, which ensures a good performance of the frequency support under the wind variation and the SoC changing. Case study is used to validate the proposed strategy, which indicates that, this strategy can adaptively adjust the power distribution between the WTGs and the ES units during the frequency support, keep the output power stable when the wind speed changes, and diminish the decrease of SoC of the ES units.

Suggested Citation

  • Li, Yong & He, Li & Liu, Fang & Tan, Yi & Cao, Yijia & Luo, Longfu & Shahidehpour, Mohammod, 2018. "A dynamic coordinated control strategy of WTG-ES combined system for short-term frequency support," Renewable Energy, Elsevier, vol. 119(C), pages 1-11.
  • Handle: RePEc:eee:renene:v:119:y:2018:i:c:p:1-11
    DOI: 10.1016/j.renene.2017.11.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117311655
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.11.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sebastián, R. & Alzola, R. Peña, 2010. "Effective active power control of a high penetration wind diesel system with a Ni–Cd battery energy storage," Renewable Energy, Elsevier, vol. 35(5), pages 952-965.
    2. Wickramasinghe, Amila & Perera, Sarath & Agalgaonkar, Ashish P. & Meegahapola, Lasantha, 2016. "Synchronous mode operation of DFIG based wind turbines for improvement of power system inertia," Renewable Energy, Elsevier, vol. 95(C), pages 152-161.
    3. Díaz-González, Francisco & Hau, Melanie & Sumper, Andreas & Gomis-Bellmunt, Oriol, 2014. "Participation of wind power plants in system frequency control: Review of grid code requirements and control methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 551-564.
    4. Boutoubat, M. & Mokrani, L. & Machmoum, M., 2013. "Control of a wind energy conversion system equipped by a DFIG for active power generation and power quality improvement," Renewable Energy, Elsevier, vol. 50(C), pages 378-386.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pusceddu, Elian & Zakeri, Behnam & Castagneto Gissey, Giorgio, 2021. "Synergies between energy arbitrage and fast frequency response for battery energy storage systems," Applied Energy, Elsevier, vol. 283(C).
    2. Agostini, Claudio A. & Armijo, Franco A. & Silva, Carlos & Nasirov, Shahriyar, 2021. "The role of frequency regulation remuneration schemes in an energy matrix with high penetration of renewable energy," Renewable Energy, Elsevier, vol. 171(C), pages 1097-1114.
    3. Pinheiro, E. & Bandeiras, F. & Gomes, M. & Coelho, P. & Fernandes, J., 2019. "Performance analysis of wind generators and PV systems in industrial small-scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 392-401.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansouri, M.Mahdi & Nayeripour, Majid & Negnevitsky, Michael, 2016. "Internal electrical protection of wind turbine with doubly fed induction generator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 840-855.
    2. Kai Liao & Yao Wang, 2017. "A Comparison between Voltage and Reactive Power Feedback Schemes of DFIGs for Inter-Area Oscillation Damping Control," Energies, MDPI, vol. 10(8), pages 1-17, August.
    3. Ademi, Sul & Jovanovic, Milutin, 2016. "Control of doubly-fed reluctance generators for wind power applications," Renewable Energy, Elsevier, vol. 85(C), pages 171-180.
    4. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose-Ignacio Sarasua, 2020. "Hybrid Wind–PV Frequency Control Strategy under Variable Weather Conditions in Isolated Power Systems," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    5. Belkacem Belabbas & Tayeb Allaoui & Mohamed Tadjine & Mouloud Denai, 2019. "Comparative study of back-stepping controller and super twisting sliding mode controller for indirect power control of wind generator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1555-1566, December.
    6. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    7. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    8. Shukla, Rishabh Dev & Tripathi, Ramesh Kumar & Thakur, Padmanabh, 2017. "DC grid/bus tied DFIG based wind energy system," Renewable Energy, Elsevier, vol. 108(C), pages 179-193.
    9. Şerban, I. & Marinescu, C., 2011. "Aggregate load-frequency control of a wind-hydro autonomous microgrid," Renewable Energy, Elsevier, vol. 36(12), pages 3345-3354.
    10. Li, Pengfei & Hu, Weihao & Hu, Rui & Huang, Qi & Yao, Jun & Chen, Zhe, 2019. "Strategy for wind power plant contribution to frequency control under variable wind speed," Renewable Energy, Elsevier, vol. 130(C), pages 1226-1236.
    11. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    12. Kanwal, S. & Khan, B. & Ali, S.M. & Mehmood, C.A., 2018. "Gaussian process regression based inertia emulation and reserve estimation for grid interfaced photovoltaic system," Renewable Energy, Elsevier, vol. 126(C), pages 865-875.
    13. Mensou, Sara & Essadki, Ahmed & Nasser, Tamou & Idrissi, Badre Bououlid & Ben Tarla, Lahssan, 2020. "Dspace DS1104 implementation of a robust nonlinear controller applied for DFIG driven by wind turbine," Renewable Energy, Elsevier, vol. 147(P1), pages 1759-1771.
    14. Dreidy, Mohammad & Mokhlis, H. & Mekhilef, Saad, 2017. "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 144-155.
    15. Lobato, E. & Doenges, K. & Egido, I. & Sigrist, L., 2020. "Limits to wind aggregation: Empirical assessment in the Spanish electricity system," Renewable Energy, Elsevier, vol. 147(P1), pages 1321-1330.
    16. Gonzalez Silva, Jean & Ferrari, Riccardo & van Wingerden, Jan-Willem, 2023. "Wind farm control for wake-loss compensation, thrust balancing and load-limiting of turbines," Renewable Energy, Elsevier, vol. 203(C), pages 421-433.
    17. Li, Yongliang & Sciacovelli, Adriano & Peng, Xiaodong & Radcliffe, Jonathan & Ding, Yulong, 2016. "Integrating compressed air energy storage with a diesel engine for electricity generation in isolated areas," Applied Energy, Elsevier, vol. 171(C), pages 26-36.
    18. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose Ignacio Sarasua, 2020. "An Adaptive Control Scheme for Variable Speed Wind Turbines Providing Frequency Regulation in Isolated Power Systems with Thermal Generation," Energies, MDPI, vol. 13(13), pages 1-19, July.
    19. Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.
    20. Iker Elorza & Carlos Calleja & Aron Pujana-Arrese, 2019. "On Wind Turbine Power Delta Control," Energies, MDPI, vol. 12(12), pages 1-25, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:119:y:2018:i:c:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.