IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v203y2023icp421-433.html
   My bibliography  Save this article

Wind farm control for wake-loss compensation, thrust balancing and load-limiting of turbines

Author

Listed:
  • Gonzalez Silva, Jean
  • Ferrari, Riccardo
  • van Wingerden, Jan-Willem

Abstract

As renewable energy sources such as wind farms become dominant, new challenges emerge for operating and controlling them. Traditionally, wind farm control aims to dispatch power set-points to individual turbines to maximize energy extraction and, thus, their usage as assets. Yet, grid balance and frequency support are fundamental in presence of high renewable penetration and volatility of energy prices and demand. This requires a paradigm change, moving from power maximization to revenue maximization. In this paper, three active power control strategies pushing this shift of paradigm are investigated, namely: wake-loss compensation, thrust balancing, and load-limiting control.

Suggested Citation

  • Gonzalez Silva, Jean & Ferrari, Riccardo & van Wingerden, Jan-Willem, 2023. "Wind farm control for wake-loss compensation, thrust balancing and load-limiting of turbines," Renewable Energy, Elsevier, vol. 203(C), pages 421-433.
  • Handle: RePEc:eee:renene:v:203:y:2023:i:c:p:421-433
    DOI: 10.1016/j.renene.2022.11.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122017657
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.11.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boersma, S. & Doekemeijer, B.M. & Siniscalchi-Minna, S. & van Wingerden, J.W., 2019. "A constrained wind farm controller providing secondary frequency regulation: An LES study," Renewable Energy, Elsevier, vol. 134(C), pages 639-652.
    2. Liu, Yichao & Ferrari, Riccardo & Wu, Ping & Jiang, Xiaoli & Li, Sunwei & Wingerden, Jan-Willem van, 2021. "Fault diagnosis of the 10MW Floating Offshore Wind Turbine Benchmark: A mixed model and signal-based approach," Renewable Energy, Elsevier, vol. 164(C), pages 391-406.
    3. Díaz-González, Francisco & Hau, Melanie & Sumper, Andreas & Gomis-Bellmunt, Oriol, 2014. "Participation of wind power plants in system frequency control: Review of grid code requirements and control methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 551-564.
    4. Adrian Gambier, 2021. "Pitch Control of Three Bladed Large Wind Energy Converters—A Review," Energies, MDPI, vol. 14(23), pages 1-24, December.
    5. Ashuri, T. & Zaaijer, M.B. & Martins, J.R.R.A. & van Bussel, G.J.W. & van Kuik, G.A.M., 2014. "Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost of energy," Renewable Energy, Elsevier, vol. 68(C), pages 893-905.
    6. Isemonger, Alan G., 2009. "The evolving design of RTO ancillary service markets," Energy Policy, Elsevier, vol. 37(1), pages 150-157, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reddy, Sohail R., 2021. "A machine learning approach for modeling irregular regions with multiple owners in wind farm layout design," Energy, Elsevier, vol. 220(C).
    2. Escalera Mendoza, Alejandra S. & Griffith, D. Todd & Jeong, Michael & Qin, Chris & Loth, Eric & Phadnis, Mandar & Pao, Lucy & Selig, Michael S., 2023. "Aero-structural rapid screening of new design concepts for offshore wind turbines," Renewable Energy, Elsevier, vol. 219(P2).
    3. Li, Pengfei & Hu, Weihao & Hu, Rui & Huang, Qi & Yao, Jun & Chen, Zhe, 2019. "Strategy for wind power plant contribution to frequency control under variable wind speed," Renewable Energy, Elsevier, vol. 130(C), pages 1226-1236.
    4. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    5. Ming, Zeng & Ximei, Liu & Lilin, Peng, 2014. "The ancillary services in China: An overview and key issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 83-90.
    6. Li, Yong & He, Li & Liu, Fang & Tan, Yi & Cao, Yijia & Luo, Longfu & Shahidehpour, Mohammod, 2018. "A dynamic coordinated control strategy of WTG-ES combined system for short-term frequency support," Renewable Energy, Elsevier, vol. 119(C), pages 1-11.
    7. Truong, Hoai Vu Anh & Dang, Tri Dung & Vo, Cong Phat & Ahn, Kyoung Kwan, 2022. "Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    8. Dreidy, Mohammad & Mokhlis, H. & Mekhilef, Saad, 2017. "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 144-155.
    9. Michael K. McWilliam & Antariksh C. Dicholkar & Frederik Zahle & Taeseong Kim, 2022. "Post-Optimum Sensitivity Analysis with Automatically Tuned Numerical Gradients Applied to Swept Wind Turbine Blades," Energies, MDPI, vol. 15(9), pages 1-19, April.
    10. Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.
    11. Iker Elorza & Carlos Calleja & Aron Pujana-Arrese, 2019. "On Wind Turbine Power Delta Control," Energies, MDPI, vol. 12(12), pages 1-25, June.
    12. Siavash Asiaban & Nezmin Kayedpour & Arash E. Samani & Dimitar Bozalakov & Jeroen D. M. De Kooning & Guillaume Crevecoeur & Lieven Vandevelde, 2021. "Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System," Energies, MDPI, vol. 14(9), pages 1-41, May.
    13. Kumar, T. Bharath & Singh, Anoop, 2021. "Ancillary services in the Indian power sector – A look at recent developments and prospects," Energy Policy, Elsevier, vol. 149(C).
    14. Ozan Gözcü & Taeseong Kim & David Robert Verelst & Michael K. McWilliam, 2022. "Swept Blade Dynamic Investigations for a 100 kW Small Wind Turbine," Energies, MDPI, vol. 15(9), pages 1-22, April.
    15. Resch, Matthias & Bühler, Jochen & Klausen, Mira & Sumper, Andreas, 2017. "Impact of operation strategies of large scale battery systems on distribution grid planning in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1042-1063.
    16. van Dijk, Mike T. & van Wingerden, Jan-Willem & Ashuri, Turaj & Li, Yaoyu, 2017. "Wind farm multi-objective wake redirection for optimizing power production and loads," Energy, Elsevier, vol. 121(C), pages 561-569.
    17. Hansen, Anca D. & Altin, Müfit & Iov, Florin, 2016. "Provision of enhanced ancillary services from wind power plants – Examples and challenges," Renewable Energy, Elsevier, vol. 97(C), pages 8-18.
    18. Arne Gloe & Clemens Jauch & Thomas Räther, 2021. "Grid Support with Wind Turbines: The Case of the 2019 Blackout in Flensburg," Energies, MDPI, vol. 14(6), pages 1-20, March.
    19. Hailun Xie & Lars Johanning, 2023. "A Hierarchical Met-Ocean Data Selection Model for Fast O&M Simulation in Offshore Renewable Energy Systems," Energies, MDPI, vol. 16(3), pages 1-20, February.
    20. Robles, Eider & Haro-Larrode, Marta & Santos-Mugica, Maider & Etxegarai, Agurtzane & Tedeschi, Elisabetta, 2019. "Comparative analysis of European grid codes relevant to offshore renewable energy installations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 171-185.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:203:y:2023:i:c:p:421-433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.