IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v10y2019i6d10.1007_s13198-019-00905-7.html
   My bibliography  Save this article

Comparative study of back-stepping controller and super twisting sliding mode controller for indirect power control of wind generator

Author

Listed:
  • Belkacem Belabbas

    (University of Ibn Khaldoun Tiaret
    Ecole Nationale Polytechnique Algiers)

  • Tayeb Allaoui

    (University of Ibn Khaldoun Tiaret)

  • Mohamed Tadjine

    (Ecole Nationale Polytechnique Algiers)

  • Mouloud Denai

    (University of Hertfordshire)

Abstract

This paper presents the application nonlinear control to regulate the rotor currents and control the active and reactive powers generated by the Doubly Fed Induction Generator used in the Wind Energy Conversion System (WECS). The proposed control strategies are based on Lyapunov stability theory and include back-stepping control (BSC) and super-twisting sliding mode control. The overall WECS model and control scheme are developed in MATLAB/Simulink and the simulation results have shown that the BSC leads to superior performance and improved transient response as compared to the STSMC controller.

Suggested Citation

  • Belkacem Belabbas & Tayeb Allaoui & Mohamed Tadjine & Mouloud Denai, 2019. "Comparative study of back-stepping controller and super twisting sliding mode controller for indirect power control of wind generator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1555-1566, December.
  • Handle: RePEc:spr:ijsaem:v:10:y:2019:i:6:d:10.1007_s13198-019-00905-7
    DOI: 10.1007/s13198-019-00905-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-019-00905-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-019-00905-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boutoubat, M. & Mokrani, L. & Machmoum, M., 2013. "Control of a wind energy conversion system equipped by a DFIG for active power generation and power quality improvement," Renewable Energy, Elsevier, vol. 50(C), pages 378-386.
    2. Hong, Chih-Ming & Ou, Ting-Chia & Lu, Kai-Hung, 2013. "Development of intelligent MPPT (maximum power point tracking) control for a grid-connected hybrid power generation system," Energy, Elsevier, vol. 50(C), pages 270-279.
    3. Mohd Zin, Abdullah Asuhaimi B. & Pesaran H.A., Mahmoud & Khairuddin, Azhar B. & Jahanshaloo, Leila & Shariati, Omid, 2013. "An overview on doubly fed induction generators′ controls and contributions to wind based electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 692-708.
    4. Merahi, Farid & Berkouk, El Madjid, 2013. "Back-to-back five-level converters for wind energy conversion system with DC-bus imbalance minimization," Renewable Energy, Elsevier, vol. 60(C), pages 137-149.
    5. Belmokhtar, K. & Doumbia, M.L. & Agbossou, K., 2014. "Novel fuzzy logic based sensorless maximum power point tracking strategy for wind turbine systems driven DFIG (doubly-fed induction generator)," Energy, Elsevier, vol. 76(C), pages 679-693.
    6. Merahi, Farid & Berkouk, El Madjid & Mekhilef, Saad, 2014. "New management structure of active and reactive power of a large wind farm based on multilevel converter," Renewable Energy, Elsevier, vol. 68(C), pages 814-828.
    7. Lin, Whei-Min & Hong, Chih-Ming, 2010. "Intelligent approach to maximum power point tracking control strategy for variable-speed wind turbine generation system," Energy, Elsevier, vol. 35(6), pages 2440-2447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumarasamy Palanimuthu & Ganesh Mayilsamy & Ameerkhan Abdul Basheer & Seong-Ryong Lee & Dongran Song & Young Hoon Joo, 2022. "A Review of Recent Aerodynamic Power Extraction Challenges in Coordinated Pitch, Yaw, and Torque Control of Large-Scale Wind Turbine Systems," Energies, MDPI, vol. 15(21), pages 1-27, November.
    2. Mousavi, Yashar & Bevan, Geraint & Kucukdemiral, Ibrahim Beklan & Fekih, Afef, 2022. "Sliding mode control of wind energy conversion systems: Trends and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bizhani, Hamed & Noroozian, Reza & Muyeen, S.M. & Blaabjerg, Frede, 2022. "Grid integration of multiple wind turbines using a multi-port converter—A novel simultaneous space vector modulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2016. "Comprehensive overview of grid interfaced wind energy generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 260-281.
    3. Ganjefar, Soheil & Ghassemi, Ali Akbar & Ahmadi, Mohamad Mehdi, 2014. "Improving efficiency of two-type maximum power point tracking methods of tip-speed ratio and optimum torque in wind turbine system using a quantum neural network," Energy, Elsevier, vol. 67(C), pages 444-453.
    4. Marwa Hassan & Alsnosy Balbaa & Hanady H. Issa & Noha H. El-Amary, 2018. "Asymptotic Output Tracked Artificial Immunity Controller for Eco-Maximum Power Point Tracking of Wind Turbine Driven by Doubly Fed Induction Generator," Energies, MDPI, vol. 11(10), pages 1-25, October.
    5. Fathabadi, Hassan, 2016. "Novel high-efficient unified maximum power point tracking controller for hybrid fuel cell/wind systems," Applied Energy, Elsevier, vol. 183(C), pages 1498-1510.
    6. Karabacak, Murat, 2019. "A new perturb and observe based higher order sliding mode MPPT control of wind turbines eliminating the rotor inertial effect," Renewable Energy, Elsevier, vol. 133(C), pages 807-827.
    7. Dai, Juchuan & Liu, Deshun & Wen, Li & Long, Xin, 2016. "Research on power coefficient of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 86(C), pages 206-215.
    8. Tiwari, Ramji & Babu, N. Ramesh, 2016. "Recent developments of control strategies for wind energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 268-285.
    9. Ganjefar, Soheil & Ghasemi, Ali Akbar, 2014. "A novel-strategy controller design for maximum power extraction in stand-alone windmill systems," Energy, Elsevier, vol. 76(C), pages 326-335.
    10. Mansouri, M.Mahdi & Nayeripour, Majid & Negnevitsky, Michael, 2016. "Internal electrical protection of wind turbine with doubly fed induction generator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 840-855.
    11. Alizadeh, Mojtaba & Kojori, Shokrollah Shokri, 2015. "Augmenting effectiveness of control loops of a PMSG (permanent magnet synchronous generator) based wind energy conversion system by a virtually adaptive PI (proportional integral) controller," Energy, Elsevier, vol. 91(C), pages 610-629.
    12. M. A. Hannan & Ali Q. Al-Shetwi & M. S. Mollik & Pin Jern Ker & M. Mannan & M. Mansor & Hussein M. K. Al-Masri & T. M. Indra Mahlia, 2023. "Wind Energy Conversions, Controls, and Applications: A Review for Sustainable Technologies and Directions," Sustainability, MDPI, vol. 15(5), pages 1-30, February.
    13. Ademi, Sul & Jovanovic, Milutin, 2016. "Control of doubly-fed reluctance generators for wind power applications," Renewable Energy, Elsevier, vol. 85(C), pages 171-180.
    14. Hossain, Md. Faruque, 2017. "Green science: Independent building technology to mitigate energy, environment, and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 695-705.
    15. Hamid Chojaa & Aziz Derouich & Mohammed Taoussi & Seif Eddine Chehaidia & Othmane Zamzoum & Mohamed I. Mosaad & Ayman Alhejji & Mourad Yessef, 2022. "Nonlinear Control Strategies for Enhancing the Performance of DFIG-Based WECS under a Real Wind Profile," Energies, MDPI, vol. 15(18), pages 1-23, September.
    16. Pengfei Wang & Jialiang Yi & Mansoureh Zangiabadi & Pádraig Lyons & Phil Taylor, 2017. "Evaluation of Voltage Control Approaches for Future Smart Distribution Networks," Energies, MDPI, vol. 10(8), pages 1-17, August.
    17. Nantian Huang & Hua Peng & Guowei Cai & Jikai Chen, 2016. "Power Quality Disturbances Feature Selection and Recognition Using Optimal Multi-Resolution Fast S-Transform and CART Algorithm," Energies, MDPI, vol. 9(11), pages 1-21, November.
    18. Andrés Henao-Muñoz & Andrés Saavedra-Montes & Carlos Ramos-Paja, 2018. "Optimal Power Dispatch of Small-Scale Standalone Microgrid Located in Colombian Territory," Energies, MDPI, vol. 11(7), pages 1-20, July.
    19. Phan, Dinh-Chung & Yamamoto, Shigeru, 2016. "Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking," Energy, Elsevier, vol. 111(C), pages 377-388.
    20. Dixon, Christopher & Reynolds, Steve & Rodley, David, 2016. "Micro/small wind turbine power control for electrolysis applications," Renewable Energy, Elsevier, vol. 87(P1), pages 182-192.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:10:y:2019:i:6:d:10.1007_s13198-019-00905-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.