IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v114y2017ipbp755-765.html
   My bibliography  Save this article

Preparation and kinetics study of biodiesel production from waste cooking oil using new functionalized ionic liquids as catalysts

Author

Listed:
  • Ullah, Zahoor
  • Bustam, M. Azmi
  • Man, Zakaria
  • Khan, Amir Sada
  • Muhammad, Nawshad
  • Sarwono, Ariyanti

Abstract

In this work, 1,4-sultone and benzimidazolium-based ionic liquids (ILs) with four different anions were synthesized, and their structures were confirmed by nuclear magnetic resonance (NMR) and elemental analysis (CHNS). The acidity of the synthesized ILs was studied using Hammett acidity function and COSMO-RS. The waste cooking oil was used as a raw material for biodiesel production and their different fatty acids were determined by gas chromatography coupled with flame ionization detector (GC-FID). These four ILs, as catalysts, were screened and comparatively IL 3-methyl-1-(4-sulfo-butyl)-benzimidazolium trifluoromethanesulfonate [BSMBIM][CF3SO3] was selected for further detailed optimization study. This IL experimental efficiency results supported the Hammett acidity function and COSMO-RS study. The catalyst performance was studied and optimised the different parameters. The catalyst efficiency was studied in one and two-step reactions. [BSMBIM][CF3SO3] as a catalyst showed the esterification of waste cooking oil up to 78.13% in a single step reaction. Potassium hydroxide was used in the second step to trans-esterify the waste cooking oil up to 94.52%. The catalyst was reused for seven times with high-yield production. The obtained biodiesel was characterized by GC, NMR, FTIR, thermogravimetric (TGA) and their physicochemical properties were compared with the already established standards. The kinetic study of this transesterification reaction was evaluated and followed the first-order reaction mechanism.

Suggested Citation

  • Ullah, Zahoor & Bustam, M. Azmi & Man, Zakaria & Khan, Amir Sada & Muhammad, Nawshad & Sarwono, Ariyanti, 2017. "Preparation and kinetics study of biodiesel production from waste cooking oil using new functionalized ionic liquids as catalysts," Renewable Energy, Elsevier, vol. 114(PB), pages 755-765.
  • Handle: RePEc:eee:renene:v:114:y:2017:i:pb:p:755-765
    DOI: 10.1016/j.renene.2017.07.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117307127
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.07.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    2. Meher, L.C. & Vidya Sagar, D. & Naik, S.N., 2006. "Technical aspects of biodiesel production by transesterification--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(3), pages 248-268, June.
    3. Liang, Xuezheng, 2013. "Synthesis of biodiesel from waste oil under mild conditions using novel acidic ionic liquid immobilization on poly divinylbenzene," Energy, Elsevier, vol. 63(C), pages 103-108.
    4. Ullah, Zahoor & Bustam, Mohamad Azmi & Man, Zakaria, 2015. "Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst," Renewable Energy, Elsevier, vol. 77(C), pages 521-526.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zainol, Muzakkir Mohammad & Amin, Nor Aishah Saidina & Asmadi, Mohd, 2019. "Kinetics and thermodynamic analysis of levulinic acid esterification using lignin-furfural carbon cryogel catalyst," Renewable Energy, Elsevier, vol. 130(C), pages 547-557.
    2. Liu, Ying & Yan, Hanzhao & Liu, Jia & Dong, Wanglai & Cao, Zhi & Hu, Xingbang & Zhou, Zheng, 2020. "Acidic deep eutectic solvents with long carbon chains as catalysts and reaction media for biodiesel production," Renewable Energy, Elsevier, vol. 162(C), pages 1842-1853.
    3. Wang, Yongqiang & Zhao, Dan & Chen, Guanyi & Liu, Shejiang & Ji, Na & Ding, Hui & Fu, Jianfeng, 2019. "Preparation of phosphotungstic acid based poly(ionic liquid) and its application to esterification of palmitic acid," Renewable Energy, Elsevier, vol. 133(C), pages 317-324.
    4. Liu, Ju-Zhao & Cui, Qi & Kang, Yu-Fei & Meng, Yao & Gao, Ming-Zhu & Efferth, Thomas & Fu, Yu-Jie, 2019. "Euonymus maackii Rupr. Seed oil as a new potential non-edible feedstock for biodiesel," Renewable Energy, Elsevier, vol. 133(C), pages 261-267.
    5. de Jesus, Sérgio S. & Maciel Filho, Rubens, 2022. "Are ionic liquids eco-friendly?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Gómez-Trejo-López, Emmanuelle & González-Díaz, María Ortencia & Aguilar-Vega, Manuel, 2022. "Waste cooking oil transesterification by sulfonated polyphenylsulfone catalytic membrane: Characterization and biodiesel production yield," Renewable Energy, Elsevier, vol. 182(C), pages 1219-1227.
    7. Panchal, Balaji & Bian, Kai & Chang, Tao & Zhu, Zheng & Wang, Jinxi & Qin, Shenjun & Zhao, Cunliang & Sun, Yuzhuang, 2021. "Synthesis of Generation-2 polyamidoamine based ionic liquid: Efficient dendrimer based catalytic green fuel production from yellow grease," Energy, Elsevier, vol. 219(C).
    8. de Jesus, Sérgio S. & Filho, Rubens Maciel, 2020. "Recent advances in lipid extraction using green solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    9. Li, Mantian & Chen, Jinyi & Huang, Youjie & Li, Meichen & Lin, Xiaocheng & Qiu, Ting, 2020. "Reusable and efficient heterogeneous catalysts for biodiesel production from free fatty acids and oils: Self-solidifying hybrid ionic liquids," Energy, Elsevier, vol. 211(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Paramvir & Varun, & Chauhan, S.R. & Kumar, Niraj, 2016. "A review on methodology for complete elimination of diesel from CI engines using mixed feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1110-1125.
    2. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    3. Verma, Puneet & Sharma, M.P., 2016. "Review of process parameters for biodiesel production from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1063-1071.
    4. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    5. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    6. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    7. Wang, Yongqiang & Zhao, Dan & Chen, Guanyi & Liu, Shejiang & Ji, Na & Ding, Hui & Fu, Jianfeng, 2019. "Preparation of phosphotungstic acid based poly(ionic liquid) and its application to esterification of palmitic acid," Renewable Energy, Elsevier, vol. 133(C), pages 317-324.
    8. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Yang, Yung-Hun, 2017. "An overview of microdiesel — A sustainable future source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1078-1090.
    9. dos Santos, Letícia Karen & Hatanaka, Rafael Rodrigues & de Oliveira, José Eduardo & Flumignan, Danilo Luiz, 2017. "Experimental factorial design on hydroesterification of waste cooking oil by subcritical conditions for biodiesel production," Renewable Energy, Elsevier, vol. 114(PB), pages 574-580.
    10. Ching-Velasquez, Jonny & Fernández-Lafuente, Roberto & Rodrigues, Rafael C. & Plata, Vladimir & Rosales-Quintero, Arnulfo & Torrestiana-Sánchez, Beatriz & Tacias-Pascacio, Veymar G., 2020. "Production and characterization of biodiesel from oil of fish waste by enzymatic catalysis," Renewable Energy, Elsevier, vol. 153(C), pages 1346-1354.
    11. Agarwal, Swati & Kumari, Sonu & Mudgal, Anurag & Khan, Suphiya, 2020. "Green synthesized nanoadditives in jojoba biodiesel-diesel blends: An improvement of engine performance and emission," Renewable Energy, Elsevier, vol. 147(P1), pages 1836-1844.
    12. Tang, Ying & Meng, Mei & Zhang, Jie & Lu, Yong, 2011. "Efficient preparation of biodiesel from rapeseed oil over modified CaO," Applied Energy, Elsevier, vol. 88(8), pages 2735-2739, August.
    13. Long, Yun-Duo & Fang, Zhen & Su, Tong-Chao & Yang, Qing, 2014. "Co-production of biodiesel and hydrogen from rapeseed and Jatropha oils with sodium silicate and Ni catalysts," Applied Energy, Elsevier, vol. 113(C), pages 1819-1825.
    14. Rathmann, Régis & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Targets and results of the Brazilian Biodiesel Incentive Program – Has it reached the Promised Land?," Applied Energy, Elsevier, vol. 97(C), pages 91-100.
    15. Koh, May Ying & Mohd. Ghazi, Tinia Idaty, 2011. "A review of biodiesel production from Jatropha curcas L. oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2240-2251, June.
    16. Boonyongmaneerat, Yuttanant & Sukjamsri, Chamaiporn & Sahapatsombut, Ukrit & Saenapitak, Sawalee & Sukkasi, Sittha, 2011. "Investigation of electrodeposited Ni-based coatings for biodiesel storage," Applied Energy, Elsevier, vol. 88(3), pages 909-913, March.
    17. Tariq, Muhammad & Ali, Saqib & Khalid, Nasir, 2012. "Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6303-6316.
    18. Shemelis N. Gebremariam & Trine Hvoslef-Eide & Meseret T. Terfa & Jorge M. Marchetti, 2019. "Techno-Economic Performance of Different Technological Based Bio-Refineries for Biofuel Production," Energies, MDPI, vol. 12(20), pages 1-21, October.
    19. Sánchez, Ángel & Maceiras, Rocio & Cancela, Ángeles & Pérez, Alfonso, 2013. "Culture aspects of Isochrysis galbana for biodiesel production," Applied Energy, Elsevier, vol. 101(C), pages 192-197.
    20. Aksoy, Laçine, 2011. "Opium poppy (Papaver somniferum L.) oil for preparation of biodiesel: Optimization of conditions," Applied Energy, Elsevier, vol. 88(12), pages 4713-4718.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:114:y:2017:i:pb:p:755-765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.