IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v101y2013icp192-197.html
   My bibliography  Save this article

Culture aspects of Isochrysis galbana for biodiesel production

Author

Listed:
  • Sánchez, Ángel
  • Maceiras, Rocio
  • Cancela, Ángeles
  • Pérez, Alfonso

Abstract

Biodiesel production from microalgae has recently increased on interest. The objective of this work is to explore the potential of biodiesel production from the microalgae Isochrysis galbana (T-ISO). For that reason, this microalgae was cultivated for biodiesel production. The culture system equipment consisted of two methacrylate ponds, 11mm thick. The pond has a base of 1.40×0.40m and a height of 0.4m. The influence of initial concentration of inoculum, stirring and carbon dioxide supply on the growth of algae were analyzed. The obtained results indicate that stirring improves the algae growth rate. The other two factors have no significant effect on final cell density. Obtained biomass was used to produce oil by extraction to use for biodiesel synthesis by means of basic-catalyzed reaction. For transesterification, microalgae oil was mixed with methanol (12:1 methanol to oil molar ratio), and sodium hydroxide (1%g NaOH/g oil) for 3h in a reactor at 62°C. The best harvest shows a biomass concentration of 0.305g/L with a FAME content of 12.5%.

Suggested Citation

  • Sánchez, Ángel & Maceiras, Rocio & Cancela, Ángeles & Pérez, Alfonso, 2013. "Culture aspects of Isochrysis galbana for biodiesel production," Applied Energy, Elsevier, vol. 101(C), pages 192-197.
  • Handle: RePEc:eee:appene:v:101:y:2013:i:c:p:192-197
    DOI: 10.1016/j.apenergy.2012.03.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912002310
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.03.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    2. Ahmad, A.L. & Yasin, N.H. Mat & Derek, C.J.C. & Lim, J.K., 2011. "Microalgae as a sustainable energy source for biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 584-593, January.
    3. Khan, Shakeel A. & Rashmi & Hussain, Mir Z. & Prasad, S. & Banerjee, U.C., 2009. "Prospects of biodiesel production from microalgae in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2361-2372, December.
    4. Huang, GuanHua & Chen, Feng & Wei, Dong & Zhang, XueWu & Chen, Gu, 2010. "Biodiesel production by microalgal biotechnology," Applied Energy, Elsevier, vol. 87(1), pages 38-46, January.
    5. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    6. Meher, L.C. & Vidya Sagar, D. & Naik, S.N., 2006. "Technical aspects of biodiesel production by transesterification--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(3), pages 248-268, June.
    7. Bozbas, Kahraman, 2008. "Biodiesel as an alternative motor fuel: Production and policies in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 542-552, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sánchez-Bayo, Alejandra & López-Chicharro, Daniel & Morales, Victoria & Espada, Juan José & Puyol, Daniel & Martínez, Fernando & Astals, Sergi & Vicente, Gemma & Bautista, Luis Fernando & Rodríguez, R, 2020. "Biodiesel and biogas production from Isochrysis galbana using dry and wet lipid extraction: A biorefinery approach," Renewable Energy, Elsevier, vol. 146(C), pages 188-195.
    2. Shimaa M. El Shafay & Ahmed Gaber & Walaa F. Alsanie & Mostafa E. Elshobary, 2021. "Influence of Nutrient Manipulation on Growth and Biochemical Constituent in Anabaena variabilis and Nostoc muscorum to Enhance Biodiesel Production," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    3. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    4. El Arroussi, Hicham & Benhima, Redouane & El Mernissi, Najib & Bouhfid, Rachid & Tilsaghani, Chakib & Bennis, Iman & Wahby, Imane, 2017. "Screening of marine microalgae strains from Moroccan coasts for biodiesel production," Renewable Energy, Elsevier, vol. 113(C), pages 1515-1522.
    5. Kshetrimayum Birla Singh & Kaushalendra & Savita Verma & Rowland Lalnunpuii & Jay Prakash Rajan, 2023. "Current Issues and Developments in Cyanobacteria-Derived Biofuel as a Potential Source of Energy for Sustainable Future," Sustainability, MDPI, vol. 15(13), pages 1-13, July.
    6. Ra, Chae Hun & Kang, Chang-Han & Kim, Na Kyoung & Lee, Choul-Gyun & Kim, Sung-Koo, 2015. "Cultivation of four microalgae for biomass and oil production using a two-stage culture strategy with salt stress," Renewable Energy, Elsevier, vol. 80(C), pages 117-122.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    2. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "Production of biodiesel using high free fatty acid feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3275-3285.
    3. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "The effects of water on biodiesel production and refining technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3456-3470.
    4. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    5. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    6. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    7. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    8. Ahmad, A.L. & Yasin, N.H. Mat & Derek, C.J.C. & Lim, J.K., 2011. "Microalgae as a sustainable energy source for biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 584-593, January.
    9. Boonyongmaneerat, Yuttanant & Sukjamsri, Chamaiporn & Sahapatsombut, Ukrit & Saenapitak, Sawalee & Sukkasi, Sittha, 2011. "Investigation of electrodeposited Ni-based coatings for biodiesel storage," Applied Energy, Elsevier, vol. 88(3), pages 909-913, March.
    10. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    11. Sharma, Yogesh Chandra & Singh, Veena, 2017. "Microalgal biodiesel: A possible solution for India’s energy security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 72-88.
    12. Baskar, G. & Aiswarya, R., 2016. "Trends in catalytic production of biodiesel from various feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 496-504.
    13. Santori, Giulio & Di Nicola, Giovanni & Moglie, Matteo & Polonara, Fabio, 2012. "A review analyzing the industrial biodiesel production practice starting from vegetable oil refining," Applied Energy, Elsevier, vol. 92(C), pages 109-132.
    14. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    15. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    16. S. M. Ashrafur Rahman & I. M. Rizwanul Fattah & Hwai Chyuan Ong & M. F. M. A. Zamri, 2021. "State-of-the-Art of Strategies to Reduce Exhaust Emissions from Diesel Engine Vehicles," Energies, MDPI, vol. 14(6), pages 1-24, March.
    17. Patel, Akash & Gami, Bharat & Patel, Pankaj & Patel, Beena, 2017. "Microalgae: Antiquity to era of integrated technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 535-547.
    18. Aytav, Emre & Kocar, Günnur, 2013. "Biodiesel from the perspective of Turkey: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 335-350.
    19. Ramachandran, K. & Suganya, T. & Nagendra Gandhi, N. & Renganathan, S., 2013. "Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 410-418.
    20. Atapour, Mehdi & Kariminia, Hamid-Reza, 2011. "Characterization and transesterification of Iranian bitter almond oil for biodiesel production," Applied Energy, Elsevier, vol. 88(7), pages 2377-2381, July.

    More about this item

    Keywords

    Biodiesel; Microalgae; Isochrysis galbana; Oil; CO2 capture;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:101:y:2013:i:c:p:192-197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.