IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v159y2020icp286-299.html
   My bibliography  Save this article

A shape optimization of ϕ-shape Darrieus wind turbine under a given range of inlet wind speed

Author

Listed:
  • Chen, Yaoran
  • Su, Jie
  • Han, Zhaolong
  • Zhao, Yongsheng
  • Zhou, Dai
  • Yang, He
  • Bao, Yan
  • Lei, Hang

Abstract

The ϕ-shape Darrieus wind turbines have great potential in application due to their omni-directionality and structural advantages. However, to achieve a higher aerodynamic performance, the design of such turbine needs attentive optimization to fit the surrounding wind variation. In this paper, a performance optimization of the shape of ϕ-shape Darrieus wind turbine with a given range of inlet wind speed is carried out. By involving a heuristic search algorithm, Covariance Matrix Adaptation Evolutionary Strategy (CMAES), into Double Multiple Streamtube model (DMST), three geometrical variables of the rotor: the equatorial radius (R), the ratio of radius over half-height (β) and the blade number (B) are modified according to the fitness function that was specially built to satisfy the inlet wind range requirements. Moreover, to validate the optimization output, a 3D CFD simulation is conducted as a comparison. The result shows that this program can present an entirely optimized model under the given range of inlet wind speed, with a 12.5% improved Cp at the optimal velocity compared with the baseline. Verification from CFD method shows a satisfactory agreement for the optimized model compared with the DMST output, indicating that this algorithm could provide a reliable reference for the shape selection of ϕ-shape Darrieus turbines under a certain inlet wind condition.

Suggested Citation

  • Chen, Yaoran & Su, Jie & Han, Zhaolong & Zhao, Yongsheng & Zhou, Dai & Yang, He & Bao, Yan & Lei, Hang, 2020. "A shape optimization of ϕ-shape Darrieus wind turbine under a given range of inlet wind speed," Renewable Energy, Elsevier, vol. 159(C), pages 286-299.
  • Handle: RePEc:eee:renene:v:159:y:2020:i:c:p:286-299
    DOI: 10.1016/j.renene.2020.05.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120307369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eriksson, Sandra & Bernhoff, Hans & Leijon, Mats, 2008. "Evaluation of different turbine concepts for wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1419-1434, June.
    2. Raciti Castelli, Marco & Englaro, Alessandro & Benini, Ernesto, 2011. "The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD," Energy, Elsevier, vol. 36(8), pages 4919-4934.
    3. Rossetti, A. & Pavesi, G., 2013. "Comparison of different numerical approaches to the study of the H-Darrieus turbines start-up," Renewable Energy, Elsevier, vol. 50(C), pages 7-19.
    4. Mohamed, M.H., 2012. "Performance investigation of H-rotor Darrieus turbine with new airfoil shapes," Energy, Elsevier, vol. 47(1), pages 522-530.
    5. Chan, C.M. & Bai, H.L. & He, D.Q., 2018. "Blade shape optimization of the Savonius wind turbine using a genetic algorithm," Applied Energy, Elsevier, vol. 213(C), pages 148-157.
    6. Delafin, P.-L. & Nishino, T. & Kolios, A. & Wang, L., 2017. "Comparison of low-order aerodynamic models and RANS CFD for full scale 3D vertical axis wind turbines," Renewable Energy, Elsevier, vol. 109(C), pages 564-575.
    7. Bedon, Gabriele & Raciti Castelli, Marco & Benini, Ernesto, 2014. "Proposal for an innovative chord distribution in the Troposkien vertical axis wind turbine concept," Energy, Elsevier, vol. 66(C), pages 689-698.
    8. Jafari, Mohammad & Razavi, Alireza & Mirhosseini, Mojtaba, 2018. "Effect of airfoil profile on aerodynamic performance and economic assessment of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 165(PA), pages 792-810.
    9. Li, Qing’an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2016. "Effect of solidity on aerodynamic forces around straight-bladed vertical axis wind turbine by wind tunnel experiments (depending on number of blades)," Renewable Energy, Elsevier, vol. 96(PA), pages 928-939.
    10. Karimian, S.M.H. & Abdolahifar, Abolfazl, 2020. "Performance investigation of a new Darrieus Vertical Axis Wind Turbine," Energy, Elsevier, vol. 191(C).
    11. Antar, E. & Elkhoury, M., 2019. "Parametric sizing optimization process of a casing for a Savonius Vertical Axis Wind Turbine," Renewable Energy, Elsevier, vol. 136(C), pages 127-138.
    12. Singh, M.A. & Biswas, A. & Misra, R.D., 2015. "Investigation of self-starting and high rotor solidity on the performance of a three S1210 blade H-type Darrieus rotor," Renewable Energy, Elsevier, vol. 76(C), pages 381-387.
    13. Wang, Ying & Tong, Hui & Sima, Hao & Wang, Jiayue & Sun, Jinjing & Huang, Diangui, 2019. "Experimental study on aerodynamic performance of deformable blade for vertical axis wind turbine," Energy, Elsevier, vol. 181(C), pages 187-201.
    14. Ma, Ning & Lei, Hang & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhang, Kai & Zhou, Lei & Chen, Caiyong, 2018. "Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio," Energy, Elsevier, vol. 150(C), pages 236-252.
    15. Islam, Mazharul & Ting, David S.-K. & Fartaj, Amir, 2008. "Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1087-1109, May.
    16. Wang, Ying & Shen, Sheng & Li, Gaohui & Huang, Diangui & Zheng, Zhongquan, 2018. "Investigation on aerodynamic performance of vertical axis wind turbine with different series airfoil shapes," Renewable Energy, Elsevier, vol. 126(C), pages 801-818.
    17. Bedon, Gabriele & Raciti Castelli, Marco & Benini, Ernesto, 2013. "Optimization of a Darrieus vertical-axis wind turbine using blade element – momentum theory and evolutionary algorithm," Renewable Energy, Elsevier, vol. 59(C), pages 184-192.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trentin, Pedro Francisco Silva & Martinez, Pedro Henrique Barsanaor de Barros & dos Santos, Gabriel Bertacco & Gasparin, Elóy Esteves & Salviano, Leandro Oliveira, 2022. "Screening analysis and unconstrained optimization of a small-scale vertical axis wind turbine," Energy, Elsevier, vol. 240(C).
    2. Su, Jie & Li, Yu & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhao, Yongsheng & Bao, Yan, 2021. "Aerodynamic performance assessment of φ-type vertical axis wind turbine under pitch motion," Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jian & Yang, Hongxing & Yang, Mo & Xu, Hongtao & Hu, Zuohuan, 2015. "A comprehensive review of the theoretical approaches for the airfoil design of lift-type vertical axis wind turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1709-1720.
    2. Chen, Jian & Pan, Xiong & Wang, Canxing & Hu, Guojun & Xu, Hongtao & Liu, Pengwei, 2019. "Airfoil parameterization evaluation based on a modified PARASEC method for a H-Darrious rotor," Energy, Elsevier, vol. 187(C).
    3. Jin, Xin & Zhao, Gaoyuan & Gao, KeJun & Ju, Wenbin, 2015. "Darrieus vertical axis wind turbine: Basic research methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 212-225.
    4. Meana-Fernández, Andrés & Solís-Gallego, Irene & Fernández Oro, Jesús Manuel & Argüelles Díaz, Katia María & Velarde-Suárez, Sandra, 2018. "Parametrical evaluation of the aerodynamic performance of vertical axis wind turbines for the proposal of optimized designs," Energy, Elsevier, vol. 147(C), pages 504-517.
    5. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    6. Baghdadi, M. & Elkoush, S. & Akle, B. & Elkhoury, M., 2020. "Dynamic shape optimization of a vertical-axis wind turbine via blade morphing technique," Renewable Energy, Elsevier, vol. 154(C), pages 239-251.
    7. Marinić-Kragić, Ivo & Vučina, Damir & Milas, Zoran, 2018. "Numerical workflow for 3D shape optimization and synthesis of vertical-axis wind turbines for specified operating regimes," Renewable Energy, Elsevier, vol. 115(C), pages 113-127.
    8. Jafari, Mohammad & Razavi, Alireza & Mirhosseini, Mojtaba, 2018. "Effect of airfoil profile on aerodynamic performance and economic assessment of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 165(PA), pages 792-810.
    9. Balduzzi, Francesco & Bianchini, Alessandro & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines," Energy, Elsevier, vol. 97(C), pages 246-261.
    10. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    11. Pedram Ghiasi & Gholamhassan Najafi & Barat Ghobadian & Ali Jafari & Mohamed Mazlan, 2022. "Analytical Study of the Impact of Solidity, Chord Length, Number of Blades, Aspect Ratio and Airfoil Type on H-Rotor Darrieus Wind Turbine Performance at Low Reynolds Number," Sustainability, MDPI, vol. 14(5), pages 1-14, February.
    12. Samuel Mitchell & Iheanyichukwu Ogbonna & Konstantin Volkov, 2021. "Improvement of Self-Starting Capabilities of Vertical Axis Wind Turbines with New Design of Turbine Blades," Sustainability, MDPI, vol. 13(7), pages 1-24, March.
    13. Sengupta, A.R. & Biswas, A. & Gupta, R., 2016. "Studies of some high solidity symmetrical and unsymmetrical blade H-Darrieus rotors with respect to starting characteristics, dynamic performances and flow physics in low wind streams," Renewable Energy, Elsevier, vol. 93(C), pages 536-547.
    14. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Marinić-Kragić, Ivo & Vučina, Damir & Milas, Zoran, 2019. "Concept of flexible vertical-axis wind turbine with numerical simulation and shape optimization," Energy, Elsevier, vol. 167(C), pages 841-852.
    16. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    17. Acarer, Sercan & Uyulan, Çağlar & Karadeniz, Ziya Haktan, 2020. "Optimization of radial inflow wind turbines for urban wind energy harvesting," Energy, Elsevier, vol. 202(C).
    18. Mohamed, M.H., 2013. "Impacts of solidity and hybrid system in small wind turbines performance," Energy, Elsevier, vol. 57(C), pages 495-504.
    19. Kumar, Rakesh & Raahemifar, Kaamran & Fung, Alan S., 2018. "A critical review of vertical axis wind turbines for urban applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 281-291.
    20. Arab, A. & Javadi, M. & Anbarsooz, M. & Moghiman, M., 2017. "A numerical study on the aerodynamic performance and the self-starting characteristics of a Darrieus wind turbine considering its moment of inertia," Renewable Energy, Elsevier, vol. 107(C), pages 298-311.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:159:y:2020:i:c:p:286-299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.