IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v51y2013icp317-330.html
   My bibliography  Save this article

2.5D large eddy simulation of vertical axis wind turbine in consideration of high angle of attack flow

Author

Listed:
  • Li, Chao
  • Zhu, Songye
  • Xu, You-lin
  • Xiao, Yiqing

Abstract

A renewed interest in vertical axis wind turbines (VAWTs) has been seen recently. Computational fluid dynamics (CFD) is regarded as a promising technique for aerodynamic studies of VAWTs. In particular, 2D unsteady Reynolds-averaged Navier–Stokes (URANS) is commonly adopted, although past studies on VAWTs revealed the limited accuracy of 2D URANS. This paper investigated the feasibility and accuracy of three different CFD approaches, namely 2D URANS, 2.5D URANS and 2.5D large eddy simulations (LES), in the aerodynamic characterization of straight-bladed VAWT (SBVAWT), with a focus on the capability of the 2.5D LES approach in CFD simulation of high angle of attack (AOA) flow. The 2.5D model differs from a full 3D model in that only a certain length of blades is modeled with periodic boundaries at the two extremities of the domain. The applications of these three approaches were systematically examined in the aerodynamic simulations of a single static airfoil and a 3-blade SBVAWT at different rotating speeds. Their capabilities to predict the aerodynamic forces were evaluated through a comparison with the wind tunnel results obtained by other researchers, with particular attention to high AOA flow beyond stall. Among the three methods, 2.5D LES yielded the best agreement with the experimental results in both cases. Detailed examinations of simulated flow field revealed that 2.5D LES produces more realistic 3D vortex diffusion after flow separation, resulting in more accurate predictions of aerodynamic coefficients in static or dynamic stall situations. It is noteworthy that 2.5D LES cannot capture the effect of tip vortex and vertical flow divergence in VAWTs, which used to be regarded by some researchers as the major cause of overprediction of VAWT power in 2D URANS. In this study, the considerably improved results achieved by 2.5D LES imply that the poor accuracy of URANS method is mainly due to its inherent limitation in vortex modeling. In general, 2.5D LES showed good agreement with experimental results at a relatively low tip speed ratio (TSR), but only fair agreement at a high TSR. Compared with the other two approaches, 2.5D LES is regarded as a more promising and effective CFD tool for investigating the aerodynamic characteristics of VAWTs, particularly their self-starting features corresponding to very low rotation speeds.

Suggested Citation

  • Li, Chao & Zhu, Songye & Xu, You-lin & Xiao, Yiqing, 2013. "2.5D large eddy simulation of vertical axis wind turbine in consideration of high angle of attack flow," Renewable Energy, Elsevier, vol. 51(C), pages 317-330.
  • Handle: RePEc:eee:renene:v:51:y:2013:i:c:p:317-330
    DOI: 10.1016/j.renene.2012.09.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112005770
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.09.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Howell, Robert & Qin, Ning & Edwards, Jonathan & Durrani, Naveed, 2010. "Wind tunnel and numerical study of a small vertical axis wind turbine," Renewable Energy, Elsevier, vol. 35(2), pages 412-422.
    2. Raciti Castelli, Marco & Englaro, Alessandro & Benini, Ernesto, 2011. "The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD," Energy, Elsevier, vol. 36(8), pages 4919-4934.
    3. Kirke, B.K., 2011. "Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines," Renewable Energy, Elsevier, vol. 36(11), pages 3013-3022.
    4. Islam, Mazharul & Ting, David S.-K. & Fartaj, Amir, 2008. "Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1087-1109, May.
    5. Hwang, In Seong & Lee, Yun Han & Kim, Seung Jo, 2009. "Optimization of cycloidal water turbine and the performance improvement by individual blade control," Applied Energy, Elsevier, vol. 86(9), pages 1532-1540, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Mitchell & Iheanyichukwu Ogbonna & Konstantin Volkov, 2021. "Improvement of Self-Starting Capabilities of Vertical Axis Wind Turbines with New Design of Turbine Blades," Sustainability, MDPI, vol. 13(7), pages 1-24, March.
    2. Andrea Alaimo & Antonio Esposito & Antonio Messineo & Calogero Orlando & Davide Tumino, 2015. "3D CFD Analysis of a Vertical Axis Wind Turbine," Energies, MDPI, vol. 8(4), pages 1-21, April.
    3. Reddy, K. Bheemalingeswara & Bhosale, Amit C., 2024. "Effect of number of blades on performance and wake recovery for a vertical axis helical hydrokinetic turbine," Energy, Elsevier, vol. 299(C).
    4. Chen, J. & Yang, H.X. & Liu, C.P. & Lau, C.H. & Lo, M., 2013. "A novel vertical axis water turbine for power generation from water pipelines," Energy, Elsevier, vol. 54(C), pages 184-193.
    5. Jin, Xin & Zhao, Gaoyuan & Gao, KeJun & Ju, Wenbin, 2015. "Darrieus vertical axis wind turbine: Basic research methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 212-225.
    6. Mohamed, M.H., 2013. "Impacts of solidity and hybrid system in small wind turbines performance," Energy, Elsevier, vol. 57(C), pages 495-504.
    7. Daniel Micallef & Gerard Van Bussel, 2018. "A Review of Urban Wind Energy Research: Aerodynamics and Other Challenges," Energies, MDPI, vol. 11(9), pages 1-27, August.
    8. Chen, Jian & Yang, Hongxing & Yang, Mo & Xu, Hongtao & Hu, Zuohuan, 2015. "A comprehensive review of the theoretical approaches for the airfoil design of lift-type vertical axis wind turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1709-1720.
    9. Asr, Mahdi Torabi & Nezhad, Erfan Zal & Mustapha, Faizal & Wiriadidjaja, Surjatin, 2016. "Study on start-up characteristics of H-Darrieus vertical axis wind turbines comprising NACA 4-digit series blade airfoils," Energy, Elsevier, vol. 112(C), pages 528-537.
    10. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    11. Mohamed, M.H., 2012. "Performance investigation of H-rotor Darrieus turbine with new airfoil shapes," Energy, Elsevier, vol. 47(1), pages 522-530.
    12. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 197(C), pages 132-150.
    13. Shakil Rehman Sheikh & Syed Hassan Raza Shah & Umar Rauf & Fawad Rauf & Zareena Kausar & Umair Aziz & Muhammad Faizan Shah & Haseeb Yaqoob & Muhammad Bilal Khan Niazi, 2021. "A Low-Cost Sustainable Energy Solution for Pristine Mountain Areas of Developing Countries," Energies, MDPI, vol. 14(11), pages 1-18, May.
    14. Shaaban, S. & Albatal, A. & Mohamed, M.H., 2018. "Optimization of H-Rotor Darrieus turbines' mutual interaction in staggered arrangements," Renewable Energy, Elsevier, vol. 125(C), pages 87-99.
    15. Balduzzi, Francesco & Bianchini, Alessandro & Maleci, Riccardo & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Critical issues in the CFD simulation of Darrieus wind turbines," Renewable Energy, Elsevier, vol. 85(C), pages 419-435.
    16. Li, Chao & Xiao, Yiqing & Xu, You-lin & Peng, Yi-xin & Hu, Gang & Zhu, Songye, 2018. "Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations," Applied Energy, Elsevier, vol. 212(C), pages 1107-1125.
    17. Kumar, Rakesh & Sarkar, Shibayan, 2022. "Effect of design parameters on the performance of helical Darrieus hydrokinetic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Joo, Sungjun & Choi, Heungsoap & Lee, Juhee, 2015. "Aerodynamic characteristics of two-bladed H-Darrieus at various solidities and rotating speeds," Energy, Elsevier, vol. 90(P1), pages 439-451.
    19. Wekesa, David Wafula & Wang, Cong & Wei, Yingjie & Danao, Louis Angelo M., 2017. "Analytical and numerical investigation of unsteady wind for enhanced energy capture in a fluctuating free-stream," Energy, Elsevier, vol. 121(C), pages 854-864.
    20. Balduzzi, Francesco & Bianchini, Alessandro & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines," Energy, Elsevier, vol. 97(C), pages 246-261.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:51:y:2013:i:c:p:317-330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.