IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v127y2017icp1-17.html
   My bibliography  Save this article

Numerical simulations of the unsteady aerodynamics of a floating vertical axis wind turbine in surge motion

Author

Listed:
  • Lei, Hang
  • Zhou, Dai
  • Bao, Yan
  • Chen, Caiyong
  • Ma, Ning
  • Han, Zhaolong

Abstract

When offshore floating vertical axis wind turbines (OF-VAWTs) face the ocean waves and wind loads under normal operation conditions, they have six-degrees of freedom (6-DOF) movement. Each of the 6-DOF movements will influence the aerodynamic performance of the OF-VAWTs in turn. In view of this, the present paper uses the computational fluid dynamics (CFD) method and the Improved Delayed Detached Eddy Simulation (IDDES) to investigate the aerodynamics of an OF-VAWT in periodic surge motion. The overset mesh technique is employed to simulate the rotor's surge motion. In order to verify the present CFD model, the power coefficients of a bottom-fixed VAWT at different tip speed ratios are compared between the experiments and the simulations. By contrast with the non-surge motion, the aerodynamic forces (torque, tangential force, normal force and pressure) and vortex structures of an OF-VAWT are analyzed. Subsequently, the unsteady aerodynamic performance of an OF-VAWT in different amplitudes and periods of surge motion is investigated. It is shown that the surge motion can widen the variation ranges of the aerodynamics forces, and change the flow field around the rotor. The smaller surging amplitude and larger surging period are proposed as they can reduce the variation ranges of the aerodynamics forces, and then keep the floating wind turbines more steady. In addition, the durability and power output of the wind turbines will be improved in surge motion with smaller amplitude and larger period.

Suggested Citation

  • Lei, Hang & Zhou, Dai & Bao, Yan & Chen, Caiyong & Ma, Ning & Han, Zhaolong, 2017. "Numerical simulations of the unsteady aerodynamics of a floating vertical axis wind turbine in surge motion," Energy, Elsevier, vol. 127(C), pages 1-17.
  • Handle: RePEc:eee:energy:v:127:y:2017:i:c:p:1-17
    DOI: 10.1016/j.energy.2017.03.087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217304620
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.03.087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Furukawa, Kazuma & Yamamoto, Masayuki, 2015. "Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine," Energy, Elsevier, vol. 90(P1), pages 784-795.
    2. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Kawabata, Toshiaki & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2016. "Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part I: For predicting aerodynamic loads and performance)," Energy, Elsevier, vol. 106(C), pages 443-452.
    3. Asr, Mahdi Torabi & Nezhad, Erfan Zal & Mustapha, Faizal & Wiriadidjaja, Surjatin, 2016. "Study on start-up characteristics of H-Darrieus vertical axis wind turbines comprising NACA 4-digit series blade airfoils," Energy, Elsevier, vol. 112(C), pages 528-537.
    4. Zhong, Hongmin & Du, Pingan & Tang, Fangning & Wang, Li, 2015. "Lagrangian dynamic large-eddy simulation of wind turbine near wakes combined with an actuator line method," Applied Energy, Elsevier, vol. 144(C), pages 224-233.
    5. Joo, Sungjun & Choi, Heungsoap & Lee, Juhee, 2015. "Aerodynamic characteristics of two-bladed H-Darrieus at various solidities and rotating speeds," Energy, Elsevier, vol. 90(P1), pages 439-451.
    6. Lee, Young-Tae & Lim, Hee-Chang, 2015. "Numerical study of the aerodynamic performance of a 500 W Darrieus-type vertical-axis wind turbine," Renewable Energy, Elsevier, vol. 83(C), pages 407-415.
    7. Cheng, Zhengshun & Madsen, Helge Aagaard & Gao, Zhen & Moan, Torgeir, 2017. "Effect of the number of blades on the dynamics of floating straight-bladed vertical axis wind turbines," Renewable Energy, Elsevier, vol. 101(C), pages 1285-1298.
    8. Howell, Robert & Qin, Ning & Edwards, Jonathan & Durrani, Naveed, 2010. "Wind tunnel and numerical study of a small vertical axis wind turbine," Renewable Energy, Elsevier, vol. 35(2), pages 412-422.
    9. Balduzzi, Francesco & Bianchini, Alessandro & Maleci, Riccardo & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Critical issues in the CFD simulation of Darrieus wind turbines," Renewable Energy, Elsevier, vol. 85(C), pages 419-435.
    10. Li, Chao & Zhu, Songye & Xu, You-lin & Xiao, Yiqing, 2013. "2.5D large eddy simulation of vertical axis wind turbine in consideration of high angle of attack flow," Renewable Energy, Elsevier, vol. 51(C), pages 317-330.
    11. Micallef, Daniel & Sant, Tonio, 2015. "Loading effects on floating offshore horizontal axis wind turbines in surge motion," Renewable Energy, Elsevier, vol. 83(C), pages 737-748.
    12. Chen, Jian & Chen, Liu & Xu, Hongtao & Yang, Hongxing & Ye, Changwen & Liu, Di, 2016. "Performance improvement of a vertical axis wind turbine by comprehensive assessment of an airfoil family," Energy, Elsevier, vol. 114(C), pages 318-331.
    13. Danao, Louis Angelo & Edwards, Jonathan & Eboibi, Okeoghene & Howell, Robert, 2014. "A numerical investigation into the influence of unsteady wind on the performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 116(C), pages 111-124.
    14. Borg, Michael & Collu, Maurizio & Kolios, Athanasios, 2014. "Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part II: Mooring line and structural dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1226-1234.
    15. Tran, Thanh Toan & Kim, Dong-Hyun, 2016. "A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion," Renewable Energy, Elsevier, vol. 90(C), pages 204-228.
    16. Lei, Hang & Zhou, Dai & Lu, Jiabao & Chen, Caiyong & Han, Zhaolong & Bao, Yan, 2017. "The impact of pitch motion of a platform on the aerodynamic performance of a floating vertical axis wind turbine," Energy, Elsevier, vol. 119(C), pages 369-383.
    17. McKenna, R. & Ostman v.d. Leye, P. & Fichtner, W., 2016. "Key challenges and prospects for large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1212-1221.
    18. Peng, H.Y. & Lam, H.F., 2016. "Turbulence effects on the wake characteristics and aerodynamic performance of a straight-bladed vertical axis wind turbine by wind tunnel tests and large eddy simulations," Energy, Elsevier, vol. 109(C), pages 557-568.
    19. Borg, Michael & Shires, Andrew & Collu, Maurizio, 2014. "Offshore floating vertical axis wind turbines, dynamics modelling state of the art. part I: Aerodynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1214-1225.
    20. Breton, Simon-Philippe & Moe, Geir, 2009. "Status, plans and technologies for offshore wind turbines in Europe and North America," Renewable Energy, Elsevier, vol. 34(3), pages 646-654.
    21. Jin, Xin & Zhao, Gaoyuan & Gao, KeJun & Ju, Wenbin, 2015. "Darrieus vertical axis wind turbine: Basic research methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 212-225.
    22. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Kawabata, Toshiaki & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2016. "Wind tunnel and numerical study of a straight-bladed Vertical Axis Wind Turbine in three-dimensional analysis (Part II: For predicting flow field and performance)," Energy, Elsevier, vol. 104(C), pages 295-307.
    23. Jeon, Minu & Lee, Seungmin & Lee, Soogab, 2014. "Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method," Renewable Energy, Elsevier, vol. 65(C), pages 207-212.
    24. Li, Yuwei & Paik, Kwang-Jun & Xing, Tao & Carrica, Pablo M., 2012. "Dynamic overset CFD simulations of wind turbine aerodynamics," Renewable Energy, Elsevier, vol. 37(1), pages 285-298.
    25. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2017. "Effect of rotor aspect ratio and solidity on a straight-bladed vertical axis wind turbine in three-dimensional analysis by the panel method," Energy, Elsevier, vol. 121(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei, Hang & Zhou, Dai & Lu, Jiabao & Chen, Caiyong & Han, Zhaolong & Bao, Yan, 2017. "The impact of pitch motion of a platform on the aerodynamic performance of a floating vertical axis wind turbine," Energy, Elsevier, vol. 119(C), pages 369-383.
    2. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    4. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Chen, Guang & Liang, Xi-Feng & Li, Xiao-Bai, 2022. "Modelling of wake dynamics and instabilities of a floating horizontal-axis wind turbine under surge motion," Energy, Elsevier, vol. 239(PB).
    6. Li, Chao & Xiao, Yiqing & Xu, You-lin & Peng, Yi-xin & Hu, Gang & Zhu, Songye, 2018. "Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations," Applied Energy, Elsevier, vol. 212(C), pages 1107-1125.
    7. Wong, Kok Hoe & Chong, Wen Tong & Poh, Sin Chew & Shiah, Yui-Chuin & Sukiman, Nazatul Liana & Wang, Chin-Tsan, 2018. "3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 32-55.
    8. Peng, H.Y. & Lam, H.F. & Liu, H.J., 2019. "Power performance assessment of H-rotor vertical axis wind turbines with different aspect ratios in turbulent flows via experiments," Energy, Elsevier, vol. 173(C), pages 121-132.
    9. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
    10. Ma, Ning & Lei, Hang & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhang, Kai & Zhou, Lei & Chen, Caiyong, 2018. "Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio," Energy, Elsevier, vol. 150(C), pages 236-252.
    11. Lam, H.F. & Peng, H.Y., 2017. "Measurements of the wake characteristics of co- and counter-rotating twin H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 131(C), pages 13-26.
    12. Balduzzi, Francesco & Drofelnik, Jernej & Bianchini, Alessandro & Ferrara, Giovanni & Ferrari, Lorenzo & Campobasso, Michele Sergio, 2017. "Darrieus wind turbine blade unsteady aerodynamics: a three-dimensional Navier-Stokes CFD assessment," Energy, Elsevier, vol. 128(C), pages 550-563.
    13. Lei, Hang & Su, Jie & Bao, Yan & Chen, Yaoran & Han, Zhaolong & Zhou, Dai, 2019. "Investigation of wake characteristics for the offshore floating vertical axis wind turbines in pitch and surge motions of platforms," Energy, Elsevier, vol. 166(C), pages 471-489.
    14. Karimian, S.M.H. & Abdolahifar, Abolfazl, 2020. "Performance investigation of a new Darrieus Vertical Axis Wind Turbine," Energy, Elsevier, vol. 191(C).
    15. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    16. Zanforlin, Stefania & Deluca, Stefano, 2018. "Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed Vertical Axis Wind Turbines," Energy, Elsevier, vol. 148(C), pages 179-195.
    17. Elkhoury, M. & Kiwata, T. & Nagao, K. & Kono, T. & ElHajj, F., 2018. "Wind tunnel experiments and Delayed Detached Eddy Simulation of a three-bladed micro vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 63-74.
    18. Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhao, Yongsheng, 2020. "Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines," Applied Energy, Elsevier, vol. 260(C).
    19. Lidong Zhang & Kaiqi Zhu & Junwei Zhong & Ling Zhang & Tieliu Jiang & Shaohua Li & Zhongbin Zhang, 2018. "Numerical Investigations of the Effects of the Rotating Shaft and Optimization of Urban Vertical Axis Wind Turbines," Energies, MDPI, vol. 11(7), pages 1-25, July.
    20. Li, Qingan & Cai, Chang & Maeda, Takao & Kamada, Yasunari & Shimizu, Kento & Dong, Yehong & Zhang, Fanghong & Xu, Jianzhong, 2021. "Visualization of aerodynamic forces and flow field on a straight-bladed vertical axis wind turbine by wind tunnel experiments and panel method," Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:127:y:2017:i:c:p:1-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.