IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v107y2017icp253-261.html
   My bibliography  Save this article

Sediment erosion induced leakage flow from guide vane clearance gap in a low specific speed Francis turbine

Author

Listed:
  • Thapa, Biraj Singh
  • Dahlhaug, Ole Gunnar
  • Thapa, Bhola

Abstract

Opportunities of future hydropower developments in Asia comes with challenges of handling sediments in rivers. Hard minerals in flow causes turbine parts to erode with several undesirable effects. In Francis turbines, sediment erosion causes an increase of clearance gap between guide vane walls and cover plates. Due to inherit pressure difference between guide vane surfaces, a leakage flow arises from the clearance gap. A guide vane cascade is developed to study the characteristics of the leakage flow in a low specific speed Francis turbine. Velocity and pressure measurements are done at 80% of BEP flow as that in a reference prototype turbine. Cases with five different sizes of clearance gaps are investigated. Strong cross-wise jet-like leakage flow is observed from the clearance gap. A vortex filament developed due to mixing of leakage flow with the main flow is found to hit the hub at runner inlet. The existence of a critical clearance gap size for which the leakage velocity and its effects are maximum is revealed. Interpretations of the experimental results show a close match with the observations of eroded turbine parts from a power plant.

Suggested Citation

  • Thapa, Biraj Singh & Dahlhaug, Ole Gunnar & Thapa, Bhola, 2017. "Sediment erosion induced leakage flow from guide vane clearance gap in a low specific speed Francis turbine," Renewable Energy, Elsevier, vol. 107(C), pages 253-261.
  • Handle: RePEc:eee:renene:v:107:y:2017:i:c:p:253-261
    DOI: 10.1016/j.renene.2017.01.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117300551
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.01.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ravi Koirala & Baoshan Zhu & Hari Prasad Neopane, 2016. "Effect of Guide Vane Clearance Gap on Francis Turbine Performance," Energies, MDPI, vol. 9(4), pages 1-14, April.
    2. Chitrakar, Sailesh & Neopane, Hari Prasad & Dahlhaug, Ole Gunnar, 2016. "Study of the simultaneous effects of secondary flow and sediment erosion in Francis turbines," Renewable Energy, Elsevier, vol. 97(C), pages 881-891.
    3. Thapa, Biraj Singh & Dahlhaug, Ole Gunnar & Thapa, Bhola, 2015. "Sediment erosion in hydro turbines and its effect on the flow around guide vanes of Francis turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1100-1113.
    4. Thapa, Biraj Singh & Thapa, Bhola & Dahlhaug, Ole Gunnar, 2012. "Current research in hydraulic turbines for handling sediments," Energy, Elsevier, vol. 47(1), pages 62-69.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Dong & Zhongdong Qian & Biraj Singh Thapa & Bhola Thapa & Zhiwei Guo, 2019. "Alternative Design of Double-Suction Centrifugal Pump to Reduce the Effects of Silt Erosion," Energies, MDPI, vol. 12(1), pages 1-22, January.
    2. Xiao, Yexiang & Guo, Bao & Rai, Anant Kumar & Liu, Jie & Liang, Quanwei & Zhang, Jin, 2022. "Analysis of hydro-abrasive erosion in Pelton buckets using a Eulerian-Lagrangian approach," Renewable Energy, Elsevier, vol. 197(C), pages 472-485.
    3. Yang, Jing & Peng, Chong & Li, Changquan & Liu, Xinjun & Liu, Jian & Wang, Zhengwei, 2023. "Design and verification of Francis turbine working in sand laden hydro-power plant," Renewable Energy, Elsevier, vol. 207(C), pages 40-46.
    4. Guo, Bao & Xiao, Yexiang & Rai, Anant Kumar & Liang, Quanwei & Liu, Jie, 2021. "Analysis of the air-water-sediment flow behavior in Pelton buckets using a Eulerian-Lagrangian approach," Energy, Elsevier, vol. 218(C).
    5. Sun, Yang & Yao, Yuting & Yan, Min & Liu, Jiaming & Li, Haimiao & Bao, Yan & Lu, Mingwei, 2019. "Energy conversion efficiency from low-head water to high-pressure gas," Renewable Energy, Elsevier, vol. 138(C), pages 1-10.
    6. Shamsuddeen, Mohamed Murshid & Park, Jungwan & Choi, Young-Seok & Kim, Jin-Hyuk, 2020. "Unsteady multi-phase cavitation analysis on the effect of anti-cavity fin installed on a Kaplan turbine runner," Renewable Energy, Elsevier, vol. 162(C), pages 861-876.
    7. Nirmal Acharya & Saroj Gautam & Sailesh Chitrakar & Chirag Trivedi & Ole Gunnar Dahlhaug, 2021. "Leakage Vortex Progression through a Guide Vane’s Clearance Gap and the Resulting Pressure Fluctuation in a Francis Turbine," Energies, MDPI, vol. 14(14), pages 1-19, July.
    8. Thapa, Biraj Singh & Dahlhaug, Ole Gunnar & Thapa, Bhola, 2018. "Flow measurements around guide vanes of Francis turbine: A PIV approach," Renewable Energy, Elsevier, vol. 126(C), pages 177-188.
    9. Leguizamón, Sebastián & Alimirzazadeh, Siamak & Jahanbakhsh, Ebrahim & Avellan, François, 2020. "Multiscale simulation of erosive wear in a prototype-scale Pelton runner," Renewable Energy, Elsevier, vol. 151(C), pages 204-215.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koirala, Ravi & Thapa, Bhola & Neopane, Hari Prasad & Zhu, Baoshan, 2017. "A review on flow and sediment erosion in guide vanes of Francis turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1054-1065.
    2. Leguizamón, Sebastián & Alimirzazadeh, Siamak & Jahanbakhsh, Ebrahim & Avellan, François, 2020. "Multiscale simulation of erosive wear in a prototype-scale Pelton runner," Renewable Energy, Elsevier, vol. 151(C), pages 204-215.
    3. Thapa, Biraj Singh & Dahlhaug, Ole Gunnar & Thapa, Bhola, 2018. "Flow measurements around guide vanes of Francis turbine: A PIV approach," Renewable Energy, Elsevier, vol. 126(C), pages 177-188.
    4. Mads Mehus Ivarson & Chirag Trivedi & Kaspar Vereide, 2021. "Investigations of Rake and Rib Structures in Sand Traps to Prevent Sediment Transport in Hydropower Plants," Energies, MDPI, vol. 14(13), pages 1-16, June.
    5. Daqing Zhou & Huixiang Chen & Jie Zhang & Shengwen Jiang & Jia Gui & Chunxia Yang & An Yu, 2019. "Numerical Study on Flow Characteristics in a Francis Turbine during Load Rejection," Energies, MDPI, vol. 12(4), pages 1-15, February.
    6. Wang, Zhiyuan & Qian, Zhongdong, 2017. "Effects of concentration and size of silt particles on the performance of a double-suction centrifugal pump," Energy, Elsevier, vol. 123(C), pages 36-46.
    7. Xiaoxia Hou & Yongguang Cheng & Zhiyan Yang & Ke Liu & Xiaoxi Zhang & Demin Liu, 2021. "Influence of Clearance Flow on Dynamic Hydraulic Forces of Pump-Turbine during Runaway Transient Process," Energies, MDPI, vol. 14(10), pages 1-20, May.
    8. Goyal, Rahul & Gandhi, B.K. & Cervantes, Michel J., 2018. "PIV measurements in Francis turbine – A review and application to transient operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2976-2991.
    9. Chen, Zhenmu & Jiang, Zhenyu & Chen, Shuai & Zhang, Wenwu & Zhu, Baoshan, 2023. "Experimental and numerical study on flow instability of pump-turbine under runaway conditions," Renewable Energy, Elsevier, vol. 210(C), pages 335-345.
    10. Jing Dong & Zhongdong Qian & Biraj Singh Thapa & Bhola Thapa & Zhiwei Guo, 2019. "Alternative Design of Double-Suction Centrifugal Pump to Reduce the Effects of Silt Erosion," Energies, MDPI, vol. 12(1), pages 1-22, January.
    11. Md Rakibuzzaman & Hyoung-Ho Kim & Kyungwuk Kim & Sang-Ho Suh & Kyung Yup Kim, 2019. "Numerical Study of Sediment Erosion Analysis in Francis Turbine," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    12. Goyal, Rahul & Gandhi, Bhupendra K., 2018. "Review of hydrodynamics instabilities in Francis turbine during off-design and transient operations," Renewable Energy, Elsevier, vol. 116(PA), pages 697-709.
    13. Koirala, Ravi & Neopane, Hari Prasad & Shrestha, Oblique & Zhu, Baoshan & Thapa, Bhola, 2017. "Selection of guide vane profile for erosion handling in Francis turbines," Renewable Energy, Elsevier, vol. 112(C), pages 328-336.
    14. Alfredo Guardo & Alfred Fontanals & Mònica Egusquiza & Carme Valero & Eduard Egusquiza, 2021. "Characterization of the Effects of Ingested Bodies on the Rotor–Stator Interaction of Hydraulic Turbines," Energies, MDPI, vol. 14(20), pages 1-16, October.
    15. Koirala, Ravi & Neopane, Hari Prasad & Zhu, Baoshan & Thapa, Bhola, 2019. "Effect of sediment erosion on flow around guide vanes of Francis turbine," Renewable Energy, Elsevier, vol. 136(C), pages 1022-1027.
    16. Nirmal Acharya & Saroj Gautam & Sailesh Chitrakar & Chirag Trivedi & Ole Gunnar Dahlhaug, 2021. "Leakage Vortex Progression through a Guide Vane’s Clearance Gap and the Resulting Pressure Fluctuation in a Francis Turbine," Energies, MDPI, vol. 14(14), pages 1-19, July.
    17. Yabin Liu & Lei Tan & Binbin Wang, 2018. "A Review of Tip Clearance in Propeller, Pump and Turbine," Energies, MDPI, vol. 11(9), pages 1-30, August.
    18. Li, Huanhuan & Xu, Beibei & Riasi, Alireza & Szulc, Przemyslaw & Chen, Diyi & M'zoughi, Fares & Skjelbred, Hans Ivar & Kong, Jiehong & Tazraei, Pedram, 2019. "Performance evaluation in enabling safety for a hydropower generation system," Renewable Energy, Elsevier, vol. 143(C), pages 1628-1642.
    19. Zhang, Yuning & Zhang, Yuning & Qian, Zhongdong & Ji, Bin & Wu, Yulin, 2016. "A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 303-318.
    20. Chitrakar, Sailesh & Solemslie, Bjørn Winther & Neopane, Hari Prasad & Dahlhaug, Ole Gunnar, 2020. "Review on numerical techniques applied in impulse hydro turbines," Renewable Energy, Elsevier, vol. 159(C), pages 843-859.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:107:y:2017:i:c:p:253-261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.