IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6669-d656645.html
   My bibliography  Save this article

Characterization of the Effects of Ingested Bodies on the Rotor–Stator Interaction of Hydraulic Turbines

Author

Listed:
  • Alfredo Guardo

    (Centre de Diagnòstic Industrial i Fluidodinàmica, Universitat Politècnica de Catalunya BarcelonaTECH (UPC-CDIF), Av. Diagonal, 647, 08028 Barcelona, Spain)

  • Alfred Fontanals

    (Centre de Diagnòstic Industrial i Fluidodinàmica, Universitat Politècnica de Catalunya BarcelonaTECH (UPC-CDIF), Av. Diagonal, 647, 08028 Barcelona, Spain)

  • Mònica Egusquiza

    (Centre de Diagnòstic Industrial i Fluidodinàmica, Universitat Politècnica de Catalunya BarcelonaTECH (UPC-CDIF), Av. Diagonal, 647, 08028 Barcelona, Spain)

  • Carme Valero

    (Centre de Diagnòstic Industrial i Fluidodinàmica, Universitat Politècnica de Catalunya BarcelonaTECH (UPC-CDIF), Av. Diagonal, 647, 08028 Barcelona, Spain)

  • Eduard Egusquiza

    (Centre de Diagnòstic Industrial i Fluidodinàmica, Universitat Politècnica de Catalunya BarcelonaTECH (UPC-CDIF), Av. Diagonal, 647, 08028 Barcelona, Spain)

Abstract

Runner and distributor blockages in hydraulic turbines occur due to the ingestion of external bodies such as rocks or logs. These obstructions can change the amplitude and uniformity of the pressure pulsations in the machine, creating large unbalanced forces that can lead to reduced efficiency, increased vibration and mechanical damage. In this paper, the effects of obstructions caused by ingested bodies in the runner and the distributor of a pump turbine on its internal pressure pulsation were investigated by means of computational fluid dynamics. A numerical model of an unobstructed pump turbine is presented and validated against experimental data. Several cases of runner or distributor blockage were studied, and their RSI pressure pulsations were recorded and analyzed at different locations. The results obtained allow us to characterize the effect of these blockages on the machine’s RSI, which can be helpful for the correct diagnosis of these types of damage.

Suggested Citation

  • Alfredo Guardo & Alfred Fontanals & Mònica Egusquiza & Carme Valero & Eduard Egusquiza, 2021. "Characterization of the Effects of Ingested Bodies on the Rotor–Stator Interaction of Hydraulic Turbines," Energies, MDPI, vol. 14(20), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6669-:d:656645
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6669/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6669/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xin Liu & Yongyao Luo & Alexandre Presas & Zhengwei Wang & Lingjiu Zhou, 2018. "Cavitation Effects on the Structural Resonance of Hydraulic Turbines: Failure Analysis in a Real Francis Turbine Runner," Energies, MDPI, vol. 11(9), pages 1-16, September.
    2. Thapa, Biraj Singh & Dahlhaug, Ole Gunnar & Thapa, Bhola, 2015. "Sediment erosion in hydro turbines and its effect on the flow around guide vanes of Francis turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1100-1113.
    3. Liu, Xin & Luo, Yongyao & Wang, Zhengwei, 2016. "A review on fatigue damage mechanism in hydro turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1-14.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Longgang & Xu, Hongyang & Li, Chenxi & Guo, Pengcheng & Xu, Zhuofei, 2024. "Unsteady assessment and alleviation of inter-blade vortex in Francis turbine," Applied Energy, Elsevier, vol. 358(C).
    2. Presas, Alexandre & Luo, Yongyao & Wang, Zhengwei & Guo, Bao, 2019. "Fatigue life estimation of Francis turbines based on experimental strain measurements: Review of the actual data and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 96-110.
    3. Dollon, Q. & Antoni, J. & Tahan, A. & Gagnon, M. & Monette, C., 2021. "Operational Modal Analysis of hydroelectric turbines using an order based likelihood approach," Renewable Energy, Elsevier, vol. 165(P1), pages 799-811.
    4. Cao, Jingwei & Luo, Yongyao & Presas, Alexandre & Ahn, Soo-Hwang & Wang, Zhengwei & Huang, Xingxing & Liu, Yan, 2022. "Influence of rotation on the modal characteristics of a bulb turbine unit rotor," Renewable Energy, Elsevier, vol. 187(C), pages 887-895.
    5. Rafel Roig & Xavier Sánchez-Botello & Xavier Escaler & Berhanu Mulu & Carl-Maikel Högström, 2022. "On the Rotating Vortex Rope and Its Induced Structural Response in a Kaplan Turbine Model," Energies, MDPI, vol. 15(17), pages 1-19, August.
    6. Ming Zhang & David Valentin & Carme Valero & Mònica Egusquiza & Weiqiang Zhao, 2018. "Numerical Study on the Dynamic Behavior of a Francis Turbine Runner Model with a Crack," Energies, MDPI, vol. 11(7), pages 1-18, June.
    7. Geng, Xinmin & Zhou, Ye & Zhao, Weiqiang & Shi, Li & Chen, Diyi & Bi, Xiaojian & Xu, Beibei, 2024. "Pricing ancillary service of a Francis hydroelectric generating system to promote renewable energy integration in a clean energy base: Tariff compensation of deep peak regulation," Renewable Energy, Elsevier, vol. 226(C).
    8. Zhang, Yuning & Zhang, Yuning & Qian, Zhongdong & Ji, Bin & Wu, Yulin, 2016. "A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 303-318.
    9. Valentín, David & Presas, Alexandre & Valero, Carme & Egusquiza, Mònica & Egusquiza, Eduard & Gomes, Joao & Avellan, François, 2020. "Transposition of the mechanical behavior from model to prototype of Francis turbines," Renewable Energy, Elsevier, vol. 152(C), pages 1011-1023.
    10. Koirala, Ravi & Thapa, Bhola & Neopane, Hari Prasad & Zhu, Baoshan, 2017. "A review on flow and sediment erosion in guide vanes of Francis turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1054-1065.
    11. Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan Ignacio & Quaranta, Emanuele & Schild, P, 2019. "Analysis of emerging technologies in the hydropower sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    12. Pham, Quang Hung & Gagnon, Martin & Antoni, Jérôme & Tahan, Antoine & Monette, Christine, 2022. "Prediction of hydroelectric turbine runner strain signal via cyclostationary decomposition and kriging interpolation," Renewable Energy, Elsevier, vol. 182(C), pages 998-1011.
    13. Trivedi, Chirag & Agnalt, Einar & Dahlhaug, Ole Gunnar, 2017. "Investigations of unsteady pressure loading in a Francis turbine during variable-speed operation," Renewable Energy, Elsevier, vol. 113(C), pages 397-410.
    14. Trivedi, Chirag & Iliev, Igor & Dahlhaug, Ole Gunnar & Markov, Zoran & Engstrom, Fredrik & Lysaker, Henning, 2020. "Investigation of a Francis turbine during speed variation: Inception of cavitation," Renewable Energy, Elsevier, vol. 166(C), pages 147-162.
    15. Kumar, Sandeep & Cervantes, Michel J. & Gandhi, Bhupendra K., 2021. "Rotating vortex rope formation and mitigation in draft tube of hydro turbines – A review from experimental perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    16. Goyal, Rahul & Gandhi, B.K. & Cervantes, Michel J., 2018. "PIV measurements in Francis turbine – A review and application to transient operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2976-2991.
    17. Zhu, Di & Tao, Ran & Xiao, Ruofu & Pan, Litan, 2020. "Solving the runner blade crack problem for a Francis hydro-turbine operating under condition-complexity," Renewable Energy, Elsevier, vol. 149(C), pages 298-320.
    18. Li, Deyou & Fu, Xiaolong & Zuo, Zhigang & Wang, Hongjie & Li, Zhenggui & Liu, Shuhong & Wei, Xianzhu, 2019. "Investigation methods for analysis of transient phenomena concerning design and operation of hydraulic-machine systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 26-46.
    19. Pham, Quang Hung & Gagnon, Martin & Antoni, Jérôme & Tahan, Antoine & Monette, Christine, 2021. "Rainflow-counting matrix interpolation over different operating conditions for hydroelectric turbine fatigue assessment," Renewable Energy, Elsevier, vol. 172(C), pages 465-476.
    20. Wang, Wei & Zhou, Lingjiu & Xia, Xiang & Tao, Ran, 2021. "Analysis of the hydrodynamic damping characteristics on a symmetrical hydrofoil," Renewable Energy, Elsevier, vol. 178(C), pages 821-829.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6669-:d:656645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.