IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v150y2020icp831-839.html
   My bibliography  Save this article

Pyrolysis of oleaginous yeast biomass from wastewater treatment: Kinetics analysis and biocrude characterization

Author

Listed:
  • Yu, Dayu
  • Hu, Shuang
  • Liu, Weishan
  • Wang, Xiaoning
  • Jiang, Haifeng
  • Dong, Nanhang

Abstract

Pyrolysis of Trichosporon fermentans biomass, a type of oleaginous yeast from the fermentation of refined soybean oil wastewater, was studied in the present work. Based on the TG/DTG curves, the activation energy values for the thermal decomposition of Trichosporon fermentans biomass were evaluated by the KAS method (111.69 kJ/mol) and FWO method (116.93 kJ/mol), respectively. The pyrolysis behavior was represented by considering the parallel degradation of four components, namely carbohydrates, proteins, lipids, and others, and the fitting degree of the simulated curve was over 0.99. According to the FTIR spectra of the end-products, the increasing hydrocarbons at a temperature around 400 °C indicated the lipid degradation. Biocrude oil was collected from a fixed bed reactor and the chemical composition was characterized by GC-TOF/MS. The yield of hydrocarbons in the bio-oil was identified as being over 28% when the pyrolysis temperature was higher than 500 °C, whilst the content of nitrogen compounds was less than 18%. The fractional yield distributions of the end-products at different pyrolysis temperatures were compared and the maximum yield of bio-oil was achieved (around 42%) at 500 °C. This study proposed a cost-effective and environmentally friendly method for the preparation of biofuel from oleaginous yeast pyrolysis.

Suggested Citation

  • Yu, Dayu & Hu, Shuang & Liu, Weishan & Wang, Xiaoning & Jiang, Haifeng & Dong, Nanhang, 2020. "Pyrolysis of oleaginous yeast biomass from wastewater treatment: Kinetics analysis and biocrude characterization," Renewable Energy, Elsevier, vol. 150(C), pages 831-839.
  • Handle: RePEc:eee:renene:v:150:y:2020:i:c:p:831-839
    DOI: 10.1016/j.renene.2020.01.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812030032X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.01.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harman-Ware, Anne E. & Morgan, Tonya & Wilson, Michael & Crocker, Mark & Zhang, Jun & Liu, Kunlei & Stork, Jozsef & Debolt, Seth, 2013. "Microalgae as a renewable fuel source: Fast pyrolysis of Scenedesmus sp," Renewable Energy, Elsevier, vol. 60(C), pages 625-632.
    2. Vo, The Ky & Ly, Hoang Vu & Lee, Ok Kyung & Lee, Eun Yeol & Kim, Chul Ho & Seo, Jeong-Woo & Kim, Jinsoo & Kim, Seung-Soo, 2017. "Pyrolysis characteristics and kinetics of microalgal Aurantiochytrium sp. KRS101," Energy, Elsevier, vol. 118(C), pages 369-376.
    3. Cai, Junmeng & He, Yifeng & Yu, Xi & Banks, Scott W. & Yang, Yang & Zhang, Xingguang & Yu, Yang & Liu, Ronghou & Bridgwater, Anthony V., 2017. "Review of physicochemical properties and analytical characterization of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 309-322.
    4. Bwapwa, Joseph K. & Anandraj, Akash & Trois, Cristina, 2017. "Possibilities for conversion of microalgae oil into aviation fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1345-1354.
    5. Hu, Zhiquan & Zheng, Yang & Yan, Feng & Xiao, Bo & Liu, Shiming, 2013. "Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization," Energy, Elsevier, vol. 52(C), pages 119-125.
    6. Na, Jeong-Geol & Park, Young-Kwon & Kim, Doo Il & Oh, You-Kwan & Jeon, Sang Goo & Kook, Jin Woo & Shin, Ji Hoon & Lee, See Hoon, 2015. "Rapid pyrolysis behavior of oleaginous microalga, Chlorella sp. KR-1 with different triglyceride contents," Renewable Energy, Elsevier, vol. 81(C), pages 779-784.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alsulami, Radi A. & El-Sayed, Saad A. & Eltaher, Mohamed A. & Mohammad, Akram & Almitani, Khalid H. & Mostafa, Mohamed E., 2023. "Pyrolysis kinetics and thermal degradation characteristics of coffee, date seed, and prickly pear wastes and their blends," Renewable Energy, Elsevier, vol. 216(C).
    2. Chen, Xinyang & Cai, Di & Yang, Yumiao & Sun, Yuhang & Wang, Binhui & Yao, Zhitong & Jin, Meiqing & Liu, Jie & Reinmöller, Markus & Badshah, Syed Lal & Magdziarz, Aneta, 2023. "Pyrolysis kinetics of bio-based polyurethane: Evaluating the kinetic parameters, thermodynamic parameters, and complementary product gas analysis using TG/FTIR and TG/GC-MS," Renewable Energy, Elsevier, vol. 205(C), pages 490-498.
    3. Liu, Xu & Guo, Yang & Dasgupta, Anish & He, Haoran & Xu, Donghai & Guan, Qingqing, 2022. "Algal bio-oil refinery: A review of heterogeneously catalyzed denitrogenation and demetallization reactions for renewable process," Renewable Energy, Elsevier, vol. 183(C), pages 627-650.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azizi, Kolsoom & Keshavarz Moraveji, Mostafa & Abedini Najafabadi, Hamed, 2018. "A review on bio-fuel production from microalgal biomass by using pyrolysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3046-3059.
    2. Galadima, Ahmad & Muraza, Oki, 2014. "Biodiesel production from algae by using heterogeneous catalysts: A critical review," Energy, Elsevier, vol. 78(C), pages 72-83.
    3. Chen, Wei & Li, Kaixu & Xia, Mingwei & Yang, Haiping & Chen, Yingquan & Chen, Xu & Che, Qingfeng & Chen, Hanping, 2018. "Catalytic deoxygenation co-pyrolysis of bamboo wastes and microalgae with biochar catalyst," Energy, Elsevier, vol. 157(C), pages 472-482.
    4. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    5. Zahedi, Ali Reza & Mirnezami, Seyed Abolfazl, 2020. "Experimental analysis of biomass to biodiesel conversion using a novel renewable combined cycle system," Renewable Energy, Elsevier, vol. 162(C), pages 1177-1194.
    6. Wang, Xin & Jin, Xiaodong & Wang, Hui & Wang, Yi & Zuo, Lu & Shen, Boxiong & Yang, Jiancheng, 2023. "Catalytic pyrolysis of microalgal lipids to liquid biofuels: Metal oxide doped catalysts with hierarchically porous structure and their performance," Renewable Energy, Elsevier, vol. 212(C), pages 887-896.
    7. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Xiao He & Anthony K. Lau & Shahab Sokhansanj, 2019. "Effect of Moisture on Gas Emissions from Stored Woody Biomass," Energies, MDPI, vol. 13(1), pages 1-14, December.
    9. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Xuejun Qian & Jingwen Xue & Yulai Yang & Seong W. Lee, 2021. "Thermal Properties and Combustion-Related Problems Prediction of Agricultural Crop Residues," Energies, MDPI, vol. 14(15), pages 1-18, July.
    11. Gang Li & Yuguang Zhou & Fang Ji & Ying Liu & Benu Adhikari & Li Tian & Zonghu Ma & Renjie Dong, 2013. "Yield and Characteristics of Pyrolysis Products Obtained from Schizochytrium limacinum under Different Temperature Regimes," Energies, MDPI, vol. 6(7), pages 1-14, July.
    12. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    13. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    14. Zharova, P.A. & Chistyakov, A.V. & Shapovalov, S.S. & Pasynskii, A.A. & Tsodikov, M.V., 2019. "Original Pt-Sn/Al2O3 catalyst for selective hydrodeoxygenation of vegetable oils," Energy, Elsevier, vol. 172(C), pages 18-25.
    15. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    16. Lin, Kuang C. & Lin, Yuan-Chung & Hsiao, Yi-Hsing, 2014. "Microwave plasma studies of Spirulina algae pyrolysis with relevance to hydrogen production," Energy, Elsevier, vol. 64(C), pages 567-574.
    17. Cheng, Wei & Shao, Jing'ai & Zhu, Youjian & Zhang, Wennan & Jiang, Hao & Hu, Junhao & Zhang, Xiong & Yang, Haiping & Chen, Hanping, 2022. "Effect of oxidative torrefaction on particulate matter emission from agricultural biomass pellet combustion in comparison with non-oxidative torrefaction," Renewable Energy, Elsevier, vol. 189(C), pages 39-51.
    18. Diaz-Mendez, S.E. & Sierra-Grajeda, J.M.T. & Hernandez-Guerrero, A. & Rodriguez-Lelis, J.M., 2013. "Entropy generation as an environmental impact indicator and a sample application to freshwater ecosystems eutrophication," Energy, Elsevier, vol. 61(C), pages 234-239.
    19. Zhang, Zhiqing & Duan, Hanqi & Zhang, Youjun & Guo, Xiaojuan & Yu, Xi & Zhang, Xingguang & Rahman, Md. Maksudur & Cai, Junmeng, 2020. "Investigation of kinetic compensation effect in lignocellulosic biomass torrefaction: Kinetic and thermodynamic analyses," Energy, Elsevier, vol. 207(C).
    20. Zhang, Zhiyi & Li, Yingkai & Luo, Laipeng & Yellezuome, Dominic & Rahman, Md Maksudur & Zou, Jianfeng & Hu, Hangli & Cai, Junmeng, 2023. "Insight into kinetic and Thermodynamic Analysis methods for lignocellulosic biomass pyrolysis," Renewable Energy, Elsevier, vol. 202(C), pages 154-171.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:150:y:2020:i:c:p:831-839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.