IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v63y2014icp308-316.html
   My bibliography  Save this article

Studies on co-cracking of jatropha oil with bagasse to obtain liquid, gaseous product and char

Author

Listed:
  • Biswas, Shelly
  • Mohanty, Pravakar
  • Sharma, D.K.

Abstract

Co-cracking of jatropha oil (JO) and bagasse was investigated under TGA conditions. The different heating rates of 5 K min−1, 15 K min−1, 25 K min−1 and 35 K min−1 under the nitrogen (N2) atmosphere were used. The Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose (KAS) and Friedman models were employed to study the kinetic analysis of the samples. The main components of degradation for cracking of bagasse and co-cracking of JO + Bagasse take place in three steps/phases as observed from DTG curve and even from the Flynn–Wall–Ozawa, KAS and Friedman curves. The co-cracking reactions were carried out in a fixed bed tubular batch reactor and the results indicate the presence of interactions among the reactive intermediates of JO and Bagasse. The synergism of the co-cracking process was observed from the yield of gaseous products and char. The liquid product obtained from the co-cracking of JO + Bagasse was aliphatic in nature. The deoxygenation, decarboxylation, decarbonylation reactions taking place during co-cracking process resulted in the removal of oxygenates from the co-cracked liquids. GC–MS of the co-cracked liquid indicated the presence of alkanes (47%). The gaseous products consisted of methane, n-pentane, n-butane, 2-methyl butane and certain uncondensed components. The chars obtained contained metals such as Mg, Al, Fe, K etc. The feasibility of utilization of the liquid, solid and gaseous products obtained from co-cracking as a fuel source was observed.

Suggested Citation

  • Biswas, Shelly & Mohanty, Pravakar & Sharma, D.K., 2014. "Studies on co-cracking of jatropha oil with bagasse to obtain liquid, gaseous product and char," Renewable Energy, Elsevier, vol. 63(C), pages 308-316.
  • Handle: RePEc:eee:renene:v:63:y:2014:i:c:p:308-316
    DOI: 10.1016/j.renene.2013.09.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113005247
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.09.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Hong & Shen, Benxian & Kabalu, J.C. & Nchare, Mominou, 2009. "Enhancing the production of biofuels from cottonseed oil by fixed-fluidized bed catalytic cracking," Renewable Energy, Elsevier, vol. 34(4), pages 1033-1039.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tripathi, Manoj & Sahu, J.N. & Ganesan, P., 2016. "Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 467-481.
    2. Sellin, Noeli & Krohl, Diego Ricardo & Marangoni, Cintia & Souza, Ozair, 2016. "Oxidative fast pyrolysis of banana leaves in fluidized bed reactor," Renewable Energy, Elsevier, vol. 96(PA), pages 56-64.
    3. Avhad, M.R. & Marchetti, J.M., 2015. "A review on recent advancement in catalytic materials for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 696-718.
    4. Stedile, T. & Ender, L. & Meier, H.F. & Simionatto, E.L. & Wiggers, V.R, 2015. "Comparison between physical properties and chemical composition of bio-oils derived from lignocellulose and triglyceride sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 92-108.
    5. Araújo, Aruzza Mabel de Morais & Lima, Regineide de Oliveira & Gondim, Amanda Duarte & Diniz, Juraci & Souza, Luiz Di & Araujo, Antonio Souza de, 2017. "Thermal and catalytic pyrolysis of sunflower oil using AlMCM-41," Renewable Energy, Elsevier, vol. 101(C), pages 900-906.
    6. Niu, Shengli & Yu, Hewei & Zhao, Shuang & Zhang, Xiangyu & Li, Ximing & Han, Kuihua & Lu, Chunmei & Wang, Yongzheng, 2019. "Apparent kinetic and thermodynamic calculation for thermal degradation of stearic acid and its esterification derivants through thermogravimetric analysis," Renewable Energy, Elsevier, vol. 133(C), pages 373-381.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hafriz, R.S.R.M. & Shafizah, I. Nor & Arifin, N.A. & Salmiaton, A. & Yunus, R. & Yap, Y.H. Taufiq & Shamsuddin, A.H., 2021. "Effect of Ni/Malaysian dolomite catalyst synthesis technique on deoxygenation reaction activity of waste cooking oil," Renewable Energy, Elsevier, vol. 178(C), pages 128-143.
    2. Iqbal, M. & Azam, M. & Naeem, M. & Khwaja, A.S. & Anpalagan, A., 2014. "Optimization classification, algorithms and tools for renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 640-654.
    3. Atadashi, I.M. & Aroua, M.K. & Aziz, A. Abdul, 2010. "High quality biodiesel and its diesel engine application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1999-2008, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:63:y:2014:i:c:p:308-316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.