IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v178y2021icp128-143.html
   My bibliography  Save this article

Effect of Ni/Malaysian dolomite catalyst synthesis technique on deoxygenation reaction activity of waste cooking oil

Author

Listed:
  • Hafriz, R.S.R.M.
  • Shafizah, I. Nor
  • Arifin, N.A.
  • Salmiaton, A.
  • Yunus, R.
  • Yap, Y.H. Taufiq
  • Shamsuddin, A.H.

Abstract

Local carbonate mineral, Malaysian dolomite has the potential as a deoxygenation catalyst due to its high capacity of CaO–MgO which enhances oxygen compound removal and produces high-quality green fuel with desirable lighter hydrocarbon. In this work, the performance of Ni-doped-calcined Malaysian dolomite (Ni/CMD900) catalyst with different catalyst synthesis techniques (precipitation, impregnation, and co-precipitation) were compared on the deoxygenation of waste cooking oil (WCO) process for green fuel production. The physicochemical properties of the synthesized catalyst were investigated by X-ray diffraction, Brunauer-Emmette-Teller surface area, temperature-programmed desorption of carbon dioxide, X-ray fluorescence, scanning emission microscopy and transmission electron microscopy analysis while the liquid products were analyzed by gas chromatography-mass spectroscopy and Fourier-transform infrared spectroscopy. Evidently from the result of the observation, the preparation technique plays an important role in determining the physicochemical properties of the catalyst for deoxygenation reaction of WCO in which precipitation technique outperformed other methods. Synthesized Ni-Malaysian dolomite-based catalyst, PRE/Ni/CMD900 catalyst was found to be superior in deoxygenation reaction activity as compared to other catalysts with high conversion of WCO (68.0%), high yield of pyrolysis oil (36.4%), and less coke formation (32.0%).

Suggested Citation

  • Hafriz, R.S.R.M. & Shafizah, I. Nor & Arifin, N.A. & Salmiaton, A. & Yunus, R. & Yap, Y.H. Taufiq & Shamsuddin, A.H., 2021. "Effect of Ni/Malaysian dolomite catalyst synthesis technique on deoxygenation reaction activity of waste cooking oil," Renewable Energy, Elsevier, vol. 178(C), pages 128-143.
  • Handle: RePEc:eee:renene:v:178:y:2021:i:c:p:128-143
    DOI: 10.1016/j.renene.2021.06.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121009411
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.06.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pattanaik, Bhabani Prasanna & Misra, Rahul Dev, 2017. "Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 545-557.
    2. Ong, Yee Kang & Bhatia, Subhash, 2010. "The current status and perspectives of biofuel production via catalytic cracking of edible and non-edible oils," Energy, Elsevier, vol. 35(1), pages 111-119.
    3. Ramesh, Arumugam & Tamizhdurai, Perumal & Shanthi, Kannan, 2019. "Catalytic hydrodeoxygenation of jojoba oil to the green-fuel application on Ni-MoS/Mesoporous zirconia-silica catalysts," Renewable Energy, Elsevier, vol. 138(C), pages 161-173.
    4. Li, Hong & Shen, Benxian & Kabalu, J.C. & Nchare, Mominou, 2009. "Enhancing the production of biofuels from cottonseed oil by fixed-fluidized bed catalytic cracking," Renewable Energy, Elsevier, vol. 34(4), pages 1033-1039.
    5. Hermida, Lilis & Abdullah, Ahmad Zuhairi & Mohamed, Abdul Rahman, 2015. "Deoxygenation of fatty acid to produce diesel-like hydrocarbons: A review of process conditions, reaction kinetics and mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1223-1233.
    6. Ooi, Xian Yih & Gao, Wei & Ong, Hwai Chyuan & Lee, Hwei Voon & Juan, Joon Ching & Chen, Wei Hsin & Lee, Keat Teong, 2019. "Overview on catalytic deoxygenation for biofuel synthesis using metal oxide supported catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 834-852.
    7. Steffen, Bjarne, 2020. "Estimating the cost of capital for renewable energy projects," Energy Economics, Elsevier, vol. 88(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Yunwu & Wang, Jida & Liu, Can & Lu, Yi & Lin, Xu & Li, Wenbin & Zheng, Zhifeng, 2020. "Efficient and stable Ni-Cu catalysts for ex situ catalytic pyrolysis vapor upgrading of oleic acid into hydrocarbon: Effect of catalyst support, process parameters and Ni-to-Cu mixed ratio," Renewable Energy, Elsevier, vol. 154(C), pages 797-812.
    2. Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.
    3. Long, Feng & Zhai, Qiaolong & Liu, Peng & Cao, Xincheng & Jiang, Xia & Wang, Fei & Wei, Linshan & Liu, Chao & Jiang, Jianchun & Xu, Junming, 2020. "Catalytic conversion of triglycerides by metal-based catalysts and subsequent modification of molecular structure by ZSM-5 and Raney Ni for the production of high-value biofuel," Renewable Energy, Elsevier, vol. 157(C), pages 1072-1080.
    4. Thongkumkoon, Skonrach & Kiatkittipong, Worapon & Hartley, Unalome Wetwatana & Laosiripojana, Navadol & Daorattanachai, Pornlada, 2019. "Catalytic activity of trimetallic sulfided Re-Ni-Mo/γ-Al2O3 toward deoxygenation of palm feedstocks," Renewable Energy, Elsevier, vol. 140(C), pages 111-123.
    5. Hancsók, Jenő & Visnyei, Olivér & Holló, András & Leveles, László & Thernesz, Artur & Varga, Géza & Valyon, József, 2019. "Alternative diesel fuels with high hydrogen content in their molecular structures," Renewable Energy, Elsevier, vol. 142(C), pages 239-248.
    6. Wei Jin & Laura Pastor-Pérez & Juan J. Villora-Pico & Mercedes M. Pastor-Blas & Antonio Sepúlveda-Escribano & Sai Gu & Nikolaos D. Charisiou & Kyriakos Papageridis & Maria A. Goula & Tomas R. Reina, 2019. "Catalytic Conversion of Palm Oil to Bio-Hydrogenated Diesel over Novel N-Doped Activated Carbon Supported Pt Nanoparticles," Energies, MDPI, vol. 13(1), pages 1-15, December.
    7. Zamani, Ali Salehi & Saidi, Majid & Najafabadi, Ali Taheri, 2023. "Selective production of diesel-like alkanes via Neem seed oil hydrodeoxygenation over Ni/MgSiO3 catalyst," Renewable Energy, Elsevier, vol. 209(C), pages 462-470.
    8. Chen, Bi-Shuang & Zeng, Yong-Yi & Liu, Lan & Chen, Lei & Duan, Peigao & Luque, Rafael & Ge, Ran & Zhang, Wuyuan, 2022. "Advances in catalytic decarboxylation of bioderived fatty acids to diesel-range alkanes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Gumber, Anurag & Zana, Riccardo & Steffen, Bjarne, 2024. "A global analysis of renewable energy project commissioning timelines," Applied Energy, Elsevier, vol. 358(C).
    10. Sharma, Rajesh & Shahbaz, Muhammad & Sinha, Avik & Vo, Xuan Vinh, 2021. "Examining the temporal impact of stock market development on carbon intensity: Evidence from South Asian countries," MPRA Paper 108925, University Library of Munich, Germany, revised 2021.
    11. Xu, Junming & Jiang, Jianchun & Zhao, Jiaping, 2016. "Thermochemical conversion of triglycerides for production of drop-in liquid fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 331-340.
    12. Luiz Moreira Coelho Junior & Amadeu Junior da Silva Fonseca & Roberto Castro & João Carlos de Oliveira Mello & Victor Hugo Ribeiro dos Santos & Renato Barros Pinheiro & Wilton Lima Sousa & Edvaldo Per, 2022. "Empirical Evidence of the Cost of Capital under Risk Conditions for Thermoelectric Power Plants in Brazil," Energies, MDPI, vol. 15(12), pages 1-12, June.
    13. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    14. Hashemi, Majid & Jenkins, Glenn & Milne, Frank, 2023. "Rooftop solar with net metering: An integrated investment appraisal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    15. Buschle, Julius & Anatolitis, Vasilios & Plötz, Patrick, 2024. "Empirical evidence on discrimination in multi-technology renewable energy auctions in Europe," Energy Policy, Elsevier, vol. 184(C).
    16. Waidelich, Paul & Steffen, Bjarne, 2024. "Renewable energy financing by state investment banks: Evidence from OECD countries," Energy Economics, Elsevier, vol. 132(C).
    17. Melliger, Marc, 2023. "Quantifying technology skewness in European multi-technology auctions and the effect of design elements and other driving factors," Energy Policy, Elsevier, vol. 175(C).
    18. Ochoa, Aitor & Vicente, Héctor & Sierra, Irene & Arandes, José M. & Castaño, Pedro, 2020. "Implications of feeding or cofeeding bio-oil in the fluid catalytic cracker (FCC) in terms of regeneration kinetics and energy balance," Energy, Elsevier, vol. 209(C).
    19. Neill Bartie & Lucero Cobos‐Becerra & Florian Mathies & Janardan Dagar & Eva Unger & Magnus Fröhling & Markus A. Reuter & Rutger Schlatmann, 2023. "Cost versus environment? Combined life cycle, techno‐economic, and circularity assessment of silicon‐ and perovskite‐based photovoltaic systems," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 993-1007, June.
    20. Makarfi Isa, Yusuf & Ganda, Elvis Tinashe, 2018. "Bio-oil as a potential source of petroleum range fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 69-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:178:y:2021:i:c:p:128-143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.