IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v96y2011i10p1375-1385.html
   My bibliography  Save this article

Exact combinatorial reliability analysis of dynamic systems with sequence-dependent failures

Author

Listed:
  • Xing, Liudong
  • Shrestha, Akhilesh
  • Dai, Yuanshun

Abstract

Many real-life fault-tolerant systems are subjected to sequence-dependent failure behavior, in which the order in which the fault events occur is important to the system reliability. Such systems can be modeled by dynamic fault trees (DFT) with priority-AND (pAND) gates. Existing approaches for the reliability analysis of systems subjected to sequence-dependent failures are typically state-space-based, simulation-based or inclusion–exclusion-based methods. Those methods either suffer from the state-space explosion problem or require long computation time especially when results with high degree of accuracy are desired. In this paper, an analytical method based on sequential binary decision diagrams is proposed. The proposed approach can analyze the exact reliability of non-repairable dynamic systems subjected to the sequence-dependent failure behavior. Also, the proposed approach is combinatorial and is applicable for analyzing systems with any arbitrary component time-to-failure distributions. The application and advantages of the proposed approach are illustrated through analysis of several examples.

Suggested Citation

  • Xing, Liudong & Shrestha, Akhilesh & Dai, Yuanshun, 2011. "Exact combinatorial reliability analysis of dynamic systems with sequence-dependent failures," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1375-1385.
  • Handle: RePEc:eee:reensy:v:96:y:2011:i:10:p:1375-1385
    DOI: 10.1016/j.ress.2011.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832011001050
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2011.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Remenyte-Prescott, R. & Andrews, J.D. & Chung, P.W.H., 2010. "An efficient phased mission reliability analysis for autonomous vehicles," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 226-235.
    2. Reibman, Andrew & Smith, Roger & Trivedi, Kishor, 1989. "Markov and Markov reward model transient analysis: An overview of numerical approaches," European Journal of Operational Research, Elsevier, vol. 40(2), pages 257-267, May.
    3. Yuge, T. & Yanagi, S., 2008. "Quantitative analysis of a fault tree with priority AND gates," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1577-1583.
    4. Durga Rao, K. & Gopika, V. & Sanyasi Rao, V.V.S. & Kushwaha, H.S. & Verma, A.K. & Srividya, A., 2009. "Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 872-883.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haiyue Yu & Xiaoyue Wu, 2021. "A method for transformation from dynamic fault tree to binary decision diagram," Journal of Risk and Reliability, , vol. 235(3), pages 416-430, June.
    2. Ge, Daochuan & Lin, Meng & Yang, Yanhua & Zhang, Ruoxing & Chou, Qiang, 2015. "Quantitative analysis of dynamic fault trees using improved Sequential Binary Decision Diagrams," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 289-299.
    3. Chen, Ying & Wang, Ze & Li, YingYi & Kang, Rui & Mosleh, Ali, 2018. "Reliability analysis of a cold-standby system considering the development stages and accumulations of failure mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 1-12.
    4. Aslett, Louis J.M. & Nagapetyan, Tigran & Vollmer, Sebastian J., 2017. "Multilevel Monte Carlo for Reliability Theory," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 188-196.
    5. Zaitseva, Elena & Levashenko, Vitaly & Kostolny, Jozef, 2015. "Importance analysis based on logical differential calculus and Binary Decision Diagram," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 135-144.
    6. Gascard, Eric & Simeu-Abazi, Zineb, 2018. "Quantitative Analysis of Dynamic Fault Trees by means of Monte Carlo Simulations: Event-Driven Simulation Approach," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 487-504.
    7. Chen, Ying & Yang, Liu & Ye, Cui & Kang, Rui, 2015. "Failure mechanism dependence and reliability evaluation of non-repairable system," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 273-283.
    8. Daochuan Ge & Ruoxing Zhang & Qiang Chou & Yanhua Yang, 2015. "Probabilistic model–based multi-integration formulas for quantifying a generalized minimal cut sequence," Journal of Risk and Reliability, , vol. 229(1), pages 73-82, February.
    9. Zhou, Siwei & Ye, Luyao & Xiong, Shengwu & Xiang, Jianwen, 2022. "Reliability analysis of dynamic fault trees with Priority-AND gates based on irrelevance coverage model," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    10. Mohammad Nadjafi & Mohammad Ali Farsi, 2021. "Reliability analysis of system with timing functional dependency using fuzzy-bathtub failure rates," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 919-930, October.
    11. Daochuan Ge & Meng Lin & Yanhua Yang & Ruoxing Zhang & Qiang Chou, 2015. "Reliability analysis of complex dynamic fault trees based on an adapted K.D. Heidtmann algorithm," Journal of Risk and Reliability, , vol. 229(6), pages 576-586, December.
    12. Jia, Xujie & Shen, Jingyuan & Xu, Fanqi & Ma, Ruihong & Song, Xueying, 2019. "Modular decomposition signature for systems with sequential failure effect," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 435-444.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gascard, Eric & Simeu-Abazi, Zineb, 2018. "Quantitative Analysis of Dynamic Fault Trees by means of Monte Carlo Simulations: Event-Driven Simulation Approach," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 487-504.
    2. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2018. "Heterogeneous 1-out-of-N warm standby systems with online checkpointing," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 127-136.
    3. Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2013. "Reliability analysis of multi-trigger binary systems subject to competing failures," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 9-17.
    4. Peng, Rui & Wu, Di & Xiao, Hui & Xing, Liudong & Gao, Kaiye, 2019. "Redundancy versus protection for a non-reparable phased-mission system subject to external impacts," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    5. Yan-Feng Li & Jinhua Mi & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Dynamic fault tree analysis based on continuous-time Bayesian networks under fuzzy numbers," Journal of Risk and Reliability, , vol. 229(6), pages 530-541, December.
    6. Gayathri, P. & Umesh, K. & Ganguli, R., 2010. "Effect of matrix cracking and material uncertainty on composite plates," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 716-728.
    7. Zeng, Zhiguo & Fang, Yi-Ping & Zhai, Qingqing & Du, Shijia, 2021. "A Markov reward process-based framework for resilience analysis of multistate energy systems under the threat of extreme events," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    8. Matsuoka, Takeshi, 2023. "Reliability analysis of a BWR plant system at startup stage  - analysis by the GO-FLOW methodology with consideration of loop structures and phased mission problem -," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    9. Janssen, Hans, 2013. "Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 123-132.
    10. Huan Yu & Jun Yang & Yu Zhao, 2018. "Reliability of nonrepairable phased-mission systems with common bus performance sharing," Journal of Risk and Reliability, , vol. 232(6), pages 647-660, December.
    11. Xing, Liudong & Levitin, Gregory, 2013. "BDD-based reliability evaluation of phased-mission systems with internal/external common-cause failures," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 145-153.
    12. Boiteau, M. & Dutuit, Y. & Rauzy, A. & Signoret, J.-P., 2006. "The AltaRica data-flow language in use: modeling of production availability of a multi-state system," Reliability Engineering and System Safety, Elsevier, vol. 91(7), pages 747-755.
    13. Bibartiu, Otto & Dürr, Frank & Rothermel, Kurt & Ottenwälder, Beate & Grau, Andreas, 2021. "Scalable k-out-of-n models for dependability analysis with Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    14. Lindhe, Andreas & Norberg, Tommy & Rosén, Lars, 2012. "Approximate dynamic fault tree calculations for modelling water supply risks," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 61-71.
    15. Azeem Ali & Sanku Dey & Haseeb Ur Rehman & Zeeshan Ali, 2019. "On Bayesian reliability estimation of a 1-out-of-k load sharing system model of modified Burr-III distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1052-1081, October.
    16. Ge, Daochuan & Lin, Meng & Yang, Yanhua & Zhang, Ruoxing & Chou, Qiang, 2015. "Quantitative analysis of dynamic fault trees using improved Sequential Binary Decision Diagrams," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 289-299.
    17. Zhang, Yimin & Shortle, John & Sherry, Lance, 2015. "Methodology for collision risk assessment of an airspace flow corridor concept," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 444-455.
    18. Chenxi Liu & Nan Chen & Jianing Yang, 2015. "New method for multi-state system reliability analysis based on linear algebraic representation," Journal of Risk and Reliability, , vol. 229(5), pages 469-482, October.
    19. Vodopivec, Neža & Miller-Hooks, Elise, 2019. "Transit system resilience: Quantifying the impacts of disruptions on diverse populations," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    20. Qianwen Li & Ruyin Long & Hong Chen & Jichao Geng, 2017. "Low Purchase Willingness for Battery Electric Vehicles: Analysis and Simulation Based on the Fault Tree Model," Sustainability, MDPI, vol. 9(5), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:96:y:2011:i:10:p:1375-1385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.