IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v106y2012icp61-71.html
   My bibliography  Save this article

Approximate dynamic fault tree calculations for modelling water supply risks

Author

Listed:
  • Lindhe, Andreas
  • Norberg, Tommy
  • Rosén, Lars

Abstract

Traditional fault tree analysis is not always sufficient when analysing complex systems. To overcome the limitations dynamic fault tree (DFT) analysis is suggested in the literature as well as different approaches for how to solve DFTs. For added value in fault tree analysis, approximate DFT calculations based on a Markovian approach are presented and evaluated here. The approximate DFT calculations are performed using standard Monte Carlo simulations and do not require simulations of the full Markov models, which simplifies model building and in particular calculations. It is shown how to extend the calculations of the traditional OR- and AND-gates, so that information is available on the failure probability, the failure rate and the mean downtime at all levels in the fault tree. Two additional logic gates are presented that make it possible to model a system's ability to compensate for failures. This work was initiated to enable correct analyses of water supply risks. Drinking water systems are typically complex with an inherent ability to compensate for failures that is not easily modelled using traditional logic gates. The approximate DFT calculations are compared to results from simulations of the corresponding Markov models for three water supply examples. For the traditional OR- and AND-gates, and one gate modelling compensation, the errors in the results are small. For the other gate modelling compensation, the error increases with the number of compensating components. The errors are, however, in most cases acceptable with respect to uncertainties in input data. The approximate DFT calculations improve the capabilities of fault tree analysis of drinking water systems since they provide additional and important information and are simple and practically applicable.

Suggested Citation

  • Lindhe, Andreas & Norberg, Tommy & Rosén, Lars, 2012. "Approximate dynamic fault tree calculations for modelling water supply risks," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 61-71.
  • Handle: RePEc:eee:reensy:v:106:y:2012:i:c:p:61-71
    DOI: 10.1016/j.ress.2012.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832012000865
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2012.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Chin-Yu & Chang, Yung-Ruei, 2007. "An improved decomposition scheme for assessing the reliability of embedded systems by using dynamic fault trees," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1403-1412.
    2. K. Durga Rao & V.V.S. Sanyasi Rao & A. K. Verma & A. Srividya, 2010. "Dynamic Fault Tree Analysis: Simulation Approach," Springer Series in Reliability Engineering, in: Javier Faulin & Angel A. Juan & Sebastián Martorell & José-Emmanuel Ramírez-Márquez (ed.), Simulation Methods for Reliability and Availability of Complex Systems, chapter 0, pages 41-64, Springer.
    3. Marquez, David & Neil, Martin & Fenton, Norman, 2010. "Improved reliability modeling using Bayesian networks and dynamic discretization," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 412-425.
    4. Durga Rao, K. & Gopika, V. & Sanyasi Rao, V.V.S. & Kushwaha, H.S. & Verma, A.K. & Srividya, A., 2009. "Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 872-883.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen, T.P. Khanh & Beugin, Julie & Marais, Juliette, 2015. "Method for evaluating an extended Fault Tree to analyse the dependability of complex systems: Application to a satellite-based railway system," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 300-313.
    2. Saeedeh Abedzadeh & Abbas Roozbahani & Ali Heidari, 2020. "Risk Assessment of Water Resources Development Plans Using Fuzzy Fault Tree Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2549-2569, June.
    3. Barbara Tchórzewska-Cieślak & Katarzyna Pietrucha-Urbanik & Dorota Papciak, 2019. "An Approach to Estimating Water Quality Changes in Water Distribution Systems Using Fault Tree Analysis," Resources, MDPI, vol. 8(4), pages 1-11, September.
    4. Xu, Jintao & Gui, Maolei & Ding, Rui & Dai, Tao & Zheng, Mengyan & Men, Xinhong & Meng, Fanpeng & Yu, Tao & Sui, Yang, 2023. "A new approach for dynamic reliability analysis of reactor protection system for HPR1000," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Neupane, Kalidas & Wauthelet, Marc & Huba, Elisabeth-Maria, 2014. "Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal," Applied Energy, Elsevier, vol. 113(C), pages 1372-1381.
    6. Mi, Jinhua & Li, Yan-Feng & Yang, Yuan-Jian & Peng, Weiwen & Huang, Hong-Zhong, 2016. "Reliability assessment of complex electromechanical systems under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 1-15.
    7. Ana Luís & Kenisha Garnett & Simon J. T. Pollard & Fiona Lickorish & Simon Jude & Paul Leinster, 2021. "Fusing strategic risk and futures methods to inform long-term strategic planning: case of water utilities," Environment Systems and Decisions, Springer, vol. 41(4), pages 523-540, December.
    8. Chemweno, Peter & Pintelon, Liliane & Muchiri, Peter Nganga & Van Horenbeek, Adriaan, 2018. "Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 64-77.
    9. Mohammad Nadjafi & Mohammad Ali Farsi & Hossein Jabbari, 2017. "Reliability analysis of multi-state emergency detection system using simulation approach based on fuzzy failure rate," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(3), pages 532-541, September.
    10. Kai Pan & Hui Liu & Xiaoqing Gou & Rui Huang & Dong Ye & Haining Wang & Adam Glowacz & Jie Kong, 2022. "Towards a Systematic Description of Fault Tree Analysis Studies Using Informetric Mapping," Sustainability, MDPI, vol. 14(18), pages 1-28, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan-Feng Li & Jinhua Mi & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Dynamic fault tree analysis based on continuous-time Bayesian networks under fuzzy numbers," Journal of Risk and Reliability, , vol. 229(6), pages 530-541, December.
    2. Gascard, Eric & Simeu-Abazi, Zineb, 2018. "Quantitative Analysis of Dynamic Fault Trees by means of Monte Carlo Simulations: Event-Driven Simulation Approach," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 487-504.
    3. Sejin Baek & Gyunyoung Heo, 2021. "Application of Dynamic Fault Tree Analysis to Prioritize Electric Power Systems in Nuclear Power Plants," Energies, MDPI, vol. 14(14), pages 1-17, July.
    4. Mi, Jinhua & Li, Yan-Feng & Yang, Yuan-Jian & Peng, Weiwen & Huang, Hong-Zhong, 2016. "Reliability assessment of complex electromechanical systems under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 1-15.
    5. Mohammad Nadjafi & Mohammad Ali Farsi, 2021. "Reliability analysis of system with timing functional dependency using fuzzy-bathtub failure rates," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 919-930, October.
    6. Zhang, Haoyuan & Marsh, D. William R, 2021. "Managing infrastructure asset: Bayesian networks for inspection and maintenance decisions reasoning and planning," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Janssen, Hans, 2013. "Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 123-132.
    8. Liu, Zengkai & Liu, Yonghong & Zhang, Dawei & Cai, Baoping & Zheng, Chao, 2015. "Fault diagnosis for a solar assisted heat pump system under incomplete data and expert knowledge," Energy, Elsevier, vol. 87(C), pages 41-48.
    9. Azeem Ali & Sanku Dey & Haseeb Ur Rehman & Zeeshan Ali, 2019. "On Bayesian reliability estimation of a 1-out-of-k load sharing system model of modified Burr-III distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1052-1081, October.
    10. Chenxi Liu & Nan Chen & Jianing Yang, 2015. "New method for multi-state system reliability analysis based on linear algebraic representation," Journal of Risk and Reliability, , vol. 229(5), pages 469-482, October.
    11. Vodopivec, Neža & Miller-Hooks, Elise, 2019. "Transit system resilience: Quantifying the impacts of disruptions on diverse populations," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    12. Qianwen Li & Ruyin Long & Hong Chen & Jichao Geng, 2017. "Low Purchase Willingness for Battery Electric Vehicles: Analysis and Simulation Based on the Fault Tree Model," Sustainability, MDPI, vol. 9(5), pages 1-20, May.
    13. Iamsumang, Chonlagarn & Mosleh, Ali & Modarres, Mohammad, 2018. "Monitoring and learning algorithms for dynamic hybrid Bayesian network in on-line system health management applications," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 118-129.
    14. Ning Wang & Hailun Zhang & Ruoning Lv & Yangming Guo & Peican Zhu, 2022. "An investigation of reliability optimization in standby systems," Journal of Risk and Reliability, , vol. 236(2), pages 237-247, April.
    15. Zhu, Jiandao & Collette, Matthew, 2015. "A dynamic discretization method for reliability inference in Dynamic Bayesian Networks," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 242-252.
    16. Durga Rao, K. & Gopika, V. & Sanyasi Rao, V.V.S. & Kushwaha, H.S. & Verma, A.K. & Srividya, A., 2009. "Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 872-883.
    17. Favarò, Francesca M. & Saleh, Joseph H., 2016. "Toward risk assessment 2.0: Safety supervisory control and model-based hazard monitoring for risk-informed safety interventions," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 316-330.
    18. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2016. "Advanced RESTART method for the estimation of the probability of failure of highly reliable hybrid dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 117-126.
    19. Guo, Yongjin & Wang, Hongdong & Guo, Yu & Zhong, Mingjun & Li, Qing & Gao, Chao, 2022. "System operational reliability evaluation based on dynamic Bayesian network and XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    20. Kai Pan & Hui Liu & Xiaoqing Gou & Rui Huang & Dong Ye & Haining Wang & Adam Glowacz & Jie Kong, 2022. "Towards a Systematic Description of Fault Tree Analysis Studies Using Informetric Mapping," Sustainability, MDPI, vol. 14(18), pages 1-28, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:106:y:2012:i:c:p:61-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.