IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v229y2015i5p469-482.html
   My bibliography  Save this article

New method for multi-state system reliability analysis based on linear algebraic representation

Author

Listed:
  • Chenxi Liu
  • Nan Chen
  • Jianing Yang

Abstract

Multi-state system is a certain complex system with failure criteria that are not limited to “normal or failure.†During the life cycle, both the system and each component inside have different states at any time point. State transition of the whole system depends on the structure function while that of any component has a certain mechanism. To directly express state transition processes of the whole system and all components, we develop a linear algebraic representation method. Based on this method, dynamic transition can be expressed by mathematic equations, in which information of both system structure function and components transition mechanism is embedded. Furthermore, the extended multi-state dynamic fault tree is introduced to multi-state system modeling. By means of the proposed linear algebraic representation, standard operating rules for both static and dynamic gates are generated by introducing two variables that are used to determine whether the transition occurs and which state the output would convert into, respectively. Then, a Monte Carlo simulation coupled with the multi-state dynamic fault tree method is proposed to calculate the reliability indices of a multi-state system. The proposed method is then validated with a dynamic fault tree problem from a literature. Finally, the servo turret system is taken as an example for the application of the proposed method.

Suggested Citation

  • Chenxi Liu & Nan Chen & Jianing Yang, 2015. "New method for multi-state system reliability analysis based on linear algebraic representation," Journal of Risk and Reliability, , vol. 229(5), pages 469-482, October.
  • Handle: RePEc:sae:risrel:v:229:y:2015:i:5:p:469-482
    DOI: 10.1177/1748006X15582129
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X15582129
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X15582129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li, Yan-Fu & Zio, Enrico, 2012. "A multi-state model for the reliability assessment of a distributed generation system via universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 28-36.
    2. Durga Rao, K. & Gopika, V. & Sanyasi Rao, V.V.S. & Kushwaha, H.S. & Verma, A.K. & Srividya, A., 2009. "Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 872-883.
    3. Graves, T.L. & Hamada, M.S. & Klamann, R. & Koehler, A. & Martz, H.F., 2007. "A fully Bayesian approach for combining multi-level information in multi-state fault tree quantification," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1476-1483.
    4. Zio, Enrico & Podofillini, Luca, 2007. "Importance measures and genetic algorithms for designing a risk-informed optimally balanced system," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1435-1447.
    5. Brion N. Feinberg & Samuel S. Chiu, 1987. "A Method to Calculate Steady-State Distributions of Large Markov Chains by Aggregating States," Operations Research, INFORMS, vol. 35(2), pages 282-290, April.
    6. Richard E. Barlow & Alexander S. Wu, 1978. "Coherent Systems with Multi-State Components," Mathematics of Operations Research, INFORMS, vol. 3(4), pages 275-281, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schäfer, Lukas & García, Sergio & Srithammavanh, Vassili, 2018. "Simplification of inclusion–exclusion on intersections of unions with application to network systems reliability," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 23-33.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan-Feng Li & Jinhua Mi & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Dynamic fault tree analysis based on continuous-time Bayesian networks under fuzzy numbers," Journal of Risk and Reliability, , vol. 229(6), pages 530-541, December.
    2. C Jacksonn & A Mosleh, 2012. "Bayesian inference with overlapping data: methodology for reliability estimation of multi-state on-demand systems," Journal of Risk and Reliability, , vol. 226(3), pages 283-294, June.
    3. Shao, Changzheng & Ding, Yi, 2020. "Two-interdependent-performance multi-state system: Definitions and reliability evaluation," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    4. Emmers, Glenn & Van Acker, Tom & Driesen, Johan, 2024. "A semi-Markovian approach to evaluate the availability of low voltage direct current systems with integrated battery storage," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Yılmaz, Emre & German, Brian J. & Pritchett, Amy R., 2023. "Optimizing resource allocations to improve system reliability via the propagation of statistical moments through fault trees," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Cao, Yingsai & Liu, Sifeng & Fang, Zhigeng & Dong, Wenjie, 2020. "Modeling ageing effects for multi-state systems with multiple components subject to competing and dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    7. Wu, Bei & Cui, Lirong & Fang, Chen, 2020. "Multi-state balanced systems with multiple failure criteria," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    8. Jafary, Bentolhoda & Fiondella, Lance, 2016. "A universal generating function-based multi-state system performance model subject to correlated failures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 16-27.
    9. Janssen, Hans, 2013. "Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 123-132.
    10. Peng, Rui & Xiao, Hui & Liu, Hanlin, 2017. "Reliability of multi-state systems with a performance sharing group of limited size," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 164-170.
    11. Ramirez-Marquez, Jose E. & Rocco, Claudio M. & Gebre, Bethel A. & Coit, David W. & Tortorella, Michael, 2006. "New insights on multi-state component criticality and importance," Reliability Engineering and System Safety, Elsevier, vol. 91(8), pages 894-904.
    12. Jackson, Chris & Mosleh, Ali, 2016. "Bayesian inference with overlapping data: Reliability estimation of multi-state on-demand continuous life metric systems with uncertain evidence," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 124-135.
    13. Niek Baer & Ahmad Al Hanbali & Richard J. Boucherie & Jan-Kees van Ommeren, 2022. "A successive censoring algorithm for a system of connected LDQBD-processes," Annals of Operations Research, Springer, vol. 310(2), pages 389-410, March.
    14. Bo, Yimin & Bao, Minglei & Ding, Yi & Hu, Yishuang, 2024. "A DNN-based reliability evaluation method for multi-state series-parallel systems considering semi-Markov process," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    15. Lindhe, Andreas & Norberg, Tommy & Rosén, Lars, 2012. "Approximate dynamic fault tree calculations for modelling water supply risks," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 61-71.
    16. Niu, Yi-Feng & Gao, Zi-You & Lam, William H.K., 2017. "A new efficient algorithm for finding all d-minimal cuts in multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 151-163.
    17. Azeem Ali & Sanku Dey & Haseeb Ur Rehman & Zeeshan Ali, 2019. "On Bayesian reliability estimation of a 1-out-of-k load sharing system model of modified Burr-III distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1052-1081, October.
    18. Badami, Marco & Fonti, Antonio & Carpignano, Andrea & Grosso, Daniele, 2018. "Design of district heating networks through an integrated thermo-fluid dynamics and reliability modelling approach," Energy, Elsevier, vol. 144(C), pages 826-838.
    19. Fang, Chen & Cui, Lirong, 2021. "Balanced Systems by Considering Multi-state Competing Risks Under Degradation Processes," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    20. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:229:y:2015:i:5:p:469-482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.