IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v229y2015i6p576-586.html
   My bibliography  Save this article

Reliability analysis of complex dynamic fault trees based on an adapted K.D. Heidtmann algorithm

Author

Listed:
  • Daochuan Ge
  • Meng Lin
  • Yanhua Yang
  • Ruoxing Zhang
  • Qiang Chou

Abstract

Dynamic fault tree as a powerful analyzing tool is used to model systems having sequence- and function-dependent failure behaviors. The problem is how to quantify a complex dynamic fault tree where different dynamic gates coexist and are highly coupled. Existing analytical methods for analyzing dynamic fault trees are mainly Markov-based, inclusion–exclusion-based and sequential binary decision diagram–based approaches. Unfortunately, all these methods have their own shortcomings. As to the Markov-based method, it is frequently subjected to the problem of state-space explosion and only applicable for systems having components with exponential time-to-failure distributions. For the inclusion–exclusion-based method, it is often vulnerable to the problem of combinatorial explosion. As to the sequential binary decision diagram method, it cannot be directly applied to a complex dynamic fault tree where dynamic gates are highly coupled together, and its computational efficiency greatly depends on the chosen variable index. In this article, we put forward using an adapted K.D. Heidtmann algorithm to analyze the reliability of a complex dynamic fault tree. To improve the computational efficiency of our proposed method, products are ordered according to their lengths and compositions. To illustrate the applicability and advantages of the proposed method, a case study is analyzed. The results show the proposed method is reasonable and efficient.

Suggested Citation

  • Daochuan Ge & Meng Lin & Yanhua Yang & Ruoxing Zhang & Qiang Chou, 2015. "Reliability analysis of complex dynamic fault trees based on an adapted K.D. Heidtmann algorithm," Journal of Risk and Reliability, , vol. 229(6), pages 576-586, December.
  • Handle: RePEc:sae:risrel:v:229:y:2015:i:6:p:576-586
    DOI: 10.1177/1748006X15594694
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X15594694
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X15594694?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Merle, G. & Roussel, J.-M. & Lesage, J.-J., 2011. "Algebraic determination of the structure function of Dynamic Fault Trees," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 267-277.
    2. Xing, Liudong & Shrestha, Akhilesh & Dai, Yuanshun, 2011. "Exact combinatorial reliability analysis of dynamic systems with sequence-dependent failures," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1375-1385.
    3. Rauzy, Antoine B., 2011. "Sequence Algebra, Sequence Decision Diagrams and Dynamic Fault Trees," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 785-792.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ge, Daochuan & Lin, Meng & Yang, Yanhua & Zhang, Ruoxing & Chou, Qiang, 2015. "Quantitative analysis of dynamic fault trees using improved Sequential Binary Decision Diagrams," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 289-299.
    2. Gascard, Eric & Simeu-Abazi, Zineb, 2018. "Quantitative Analysis of Dynamic Fault Trees by means of Monte Carlo Simulations: Event-Driven Simulation Approach," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 487-504.
    3. Haiyue Yu & Xiaoyue Wu, 2021. "A method for transformation from dynamic fault tree to binary decision diagram," Journal of Risk and Reliability, , vol. 235(3), pages 416-430, June.
    4. Daochuan Ge & Ruoxing Zhang & Qiang Chou & Yanhua Yang, 2015. "Probabilistic model–based multi-integration formulas for quantifying a generalized minimal cut sequence," Journal of Risk and Reliability, , vol. 229(1), pages 73-82, February.
    5. Zhou, Siwei & Ye, Luyao & Xiong, Shengwu & Xiang, Jianwen, 2022. "Reliability analysis of dynamic fault trees with Priority-AND gates based on irrelevance coverage model," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    6. Zaitseva, Elena & Levashenko, Vitaly & Kostolny, Jozef, 2015. "Importance analysis based on logical differential calculus and Binary Decision Diagram," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 135-144.
    7. Levitin, Gregory & Xing, Liudong & Haim, Hanoch Ben & Dai, Yuanshun, 2019. "Optimal structure of series system with 1-out-of-n warm standby subsystems performing operation and rescue functions," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 523-531.
    8. Chen, Ying & Wang, Ze & Li, YingYi & Kang, Rui & Mosleh, Ali, 2018. "Reliability analysis of a cold-standby system considering the development stages and accumulations of failure mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 1-12.
    9. Aslett, Louis J.M. & Nagapetyan, Tigran & Vollmer, Sebastian J., 2017. "Multilevel Monte Carlo for Reliability Theory," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 188-196.
    10. Piriou, Pierre-Yves & Faure, Jean-Marc & Lesage, Jean-Jacques, 2017. "Generalized Boolean logic Driven Markov Processes: A powerful modeling framework for Model-Based Safety Analysis of dynamic repairable and reconfigurable systems," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 57-68.
    11. Ola Tannous & Liudong Xing & Rui Peng & Min Xie, 2014. "Reliability of warm-standby systems subject to imperfect fault coverage," Journal of Risk and Reliability, , vol. 228(6), pages 606-620, December.
    12. Jia, Xujie & Shen, Jingyuan & Xu, Fanqi & Ma, Ruihong & Song, Xueying, 2019. "Modular decomposition signature for systems with sequential failure effect," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 435-444.
    13. Pierre-Yves Piriou & Jean-Marc Faure & Jean-Jacques Lesage, 2022. "Finding the minimal cut sequences of dynamic, repairable, and reconfigurable systems from Generalized Boolean logic Driven Markov Process models," Journal of Risk and Reliability, , vol. 236(1), pages 209-220, February.
    14. Xu, Jintao & Gui, Maolei & Ding, Rui & Dai, Tao & Zheng, Mengyan & Men, Xinhong & Meng, Fanpeng & Yu, Tao & Sui, Yang, 2023. "A new approach for dynamic reliability analysis of reactor protection system for HPR1000," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    15. Mohammad Nadjafi & Mohammad Ali Farsi, 2021. "Reliability analysis of system with timing functional dependency using fuzzy-bathtub failure rates," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 919-930, October.
    16. Cui, L.X. & Du, Yi-Mu & Sun, C.P., 2023. "On system reliability for time-varying structure," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    17. Chen, Ying & Yang, Liu & Ye, Cui & Kang, Rui, 2015. "Failure mechanism dependence and reliability evaluation of non-repairable system," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 273-283.
    18. Nguyen, T.P. Khanh & Beugin, Julie & Marais, Juliette, 2015. "Method for evaluating an extended Fault Tree to analyse the dependability of complex systems: Application to a satellite-based railway system," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 300-313.
    19. Rauzy, Antoine & Blériot-Fabre, Chaire, 2015. "Towards a sound semantics for dynamic fault trees," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 184-191.
    20. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2018. "Co-optimization of state dependent loading and mission abort policy in heterogeneous warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 151-158.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:229:y:2015:i:6:p:576-586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.